
20a-1!© Gunnar Gotshalks!

Inheritance!
Polymorphism & Dynamic Types!

20a-2!© Gunnar Gotshalks!

Inheritance Terminology!

•  Any class that inherits directly or indirectly from C,
including C itself is a descendant of C 
 
 
 
 
 
 
 
 
 
!

•  A proper descendant of C is a descendant of C other
than itself!

C! ...!

20a-3!© Gunnar Gotshalks!

Inheritance Terminology – 2!

•  An ancestor of C is a class A such that C is 
! ! ! !descendant of A 

 
 
 
 
 
 
 
 
 
!

•  A proper ancestor of C is an ancestor of C other than
itself.!

C! ...!

20a-4!© Gunnar Gotshalks!

Subtyping Inheritance!

•  Subtyping relationship!
»  Occurs when there is a strong degree of commonality

between two or more classes!
>  E.g. between PERSON and EMPLOYEE!

20a-5!© Gunnar Gotshalks!

Subtyping Inheritance – 2!

•  Subtyping relationship!

»  Occurs when there is a strong degree of commonality between
two or more classes!

>  E.g. between PERSON and EMPLOYEE!

•  An EMPLOYEE is a PERSON!
»  employees behave like persons but also have their own

specialized behaviour!

20a-6!© Gunnar Gotshalks!

Subtyping Inheritance – 3!

•  Subtyping relationship!

»  Occurs when there is a strong degree of commonality between
two or more classes!

>  E.g. between PERSON and EMPLOYEE!

•  An EMPLOYEE is a PERSON!

»  employees behave like persons but also have their own
specialized behaviour!

•  When this degree of common behaviour occurs,
EMPLOYEE is said to be a subtype of PERSON!

20a-7!© Gunnar Gotshalks!

Subtyping Inheritance – 4!

•  Subtyping relationship!

»  Occurs when there is a strong degree of commonality between
two or more classes!

>  E.g. between PERSON and EMPLOYEE!

•  An EMPLOYEE is a PERSON!

»  employees behave like persons but also have their own
specialized behaviour!

•  When this degree of common behaviour occurs, EMPLOYEE is said to
be a subtype of PERSON!

•  Subtyping models the is-a relationship between classes!

20a-8!© Gunnar Gotshalks!

Dynamic Binding!

PERSON!

EMPLOYEE!

p1!

e1!

create p1 -- 1!
!
!
create e1 -- 2!

PERSON!

EMPLOYEE!

p1!

e1!
p1 := e1 -- 3!

20a-9!© Gunnar Gotshalks!

Dynamic Binding – 2!

•  It is the essence of polymorphism – multiple types!

20a-10!© Gunnar Gotshalks!

Dynamic Binding – 3!

•  It is the essence of polymorphism – multiple types!
»  Ability to invoke methods applicable to the dynamic

type of an object rather than its static type!

20a-11!© Gunnar Gotshalks!

Dynamic Binding – 4!

•  It is the essence of polymorphism – multiple types!
»  Ability to invoke methods applicable to the dynamic

type of an object rather than its static type!
>  During execution we can attach a reference to

objects of different types!

20a-12!© Gunnar Gotshalks!

Dynamic Binding – 5!

•  It is the essence of polymorphism – multiple types!
»  Ability to invoke methods applicable to the dynamic

type of an object rather than its static type!
>  During execution we can attach a reference to

objects of different types!
>  both PERSON and EMPLOYEE have a feature display

(EMPLOYEE inherits from PERSON)!

p1 , p2 : PERSON!
e : EMPLOYEE!
p2 := p1 -- ok type match !
p1.display -- PERSON display!
p1 := e -- ok, type conforms!
p1.display -- EMPLOYEE display!

20a-13!© Gunnar Gotshalks!

Example hierarchy!

FIGURE *

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON ELLIPSE

CIRCLE

RECTANGLE TRIANGLE

SQUARE

extent*
barycenter*
…

display*
rotate*
…

perimeter*

perimeter+ perimeter+

perimeter++
diagonal

...
...

perimeter++ perimeter++

•  Consider the following class hierarchy!

P468 Meyer!

20a-14!© Gunnar Gotshalks!

Figure Polymorphism!

•  Consider a figure hierarchy similar to that on the previous
slide!

•  Suppose we had an array of figures and want to rotate all
the figures in an array of figures!

>  Each figure has its own rotation method!

20a-15!© Gunnar Gotshalks!

Figure Polymorphism – 2!

•  Want a general and maintainable solution!

20a-16!© Gunnar Gotshalks!

Figure Polymorphism – 3!

•  Want a general and maintainable solution!

•  Want to be able to add new kinds of figures without !
»  breaking previous programs!
»  without modifying the rotate all figures method!

20a-17!© Gunnar Gotshalks!

Figure Polymorphism – 4!

•  Want a general and maintainable solution!

•  Want to be able to add new kinds of figures without !
»  breaking previous programs!
»  without modifying the rotate all figures method!

•  Solution!
»  dynamic binding!

20a-18!© Gunnar Gotshalks!

Figure Polymorphism – 3!

-- In a parent class!
!
f : ARRAY [FIGURE]!
!
rotate_all (d : real)!
 require d > 0!
 do!
 from i := f.lower!
 until i > f.upper!
 loop!
 f.item(i).rotate(d) -- dynamic binding!
 i := i + 1!
 end!
 end!

20a-19!© Gunnar Gotshalks!

Feature Call Rule!

!

In a feature call x.f where the type of x is based on a
class C, feature f must be defined in one of the
ancestors of C!

20a-20!© Gunnar Gotshalks!

Feature Call Rule – 2!

!
»  Example in rotate_all!

>  rotate must be a feature in the class Figure!
>  Each type of figure creates a custom instance of the

feature rotate !

In a feature call x.f where the type of x is based on a
class C, feature f must be defined in one of the
ancestors of C!

20a-21!© Gunnar Gotshalks!

Type Conformance Definition!

»  A type U conforms to a type T only if the declared class
of U is a descendant of the declared class T!

20a-22!© Gunnar Gotshalks!

Type Conformance Definition – 2!

»  A type U conforms to a type T only if the declared class of U is
a descendant of the declared class T!

»  For generically derived types, every actual parameter of
U must (recursively) conform to the corresponding
formal parameter in T!

>  void does not conform to expanded types!

20a-23!© Gunnar Gotshalks!

Type Conformance Rule!

! !!

An attachment of target x and source y is only valid
if the type of y conforms to the type of x!

20a-24!© Gunnar Gotshalks!

Type Conformance Rule – 2!

! ! Attachment is either!
 x := y!
or!
 y is an actual argument to parameter x!

An attachment of target x and source y is only valid
if the type of y conforms to the type of x!

20a-25!© Gunnar Gotshalks!

Direct Instances & Instances!

»  A direct instance of a class C is an object produced
according to the exact definition of C , either!

 through a creation instruction, create x , where the
target x is of type C !

 or!
 recursively by cloning a direct instance of C!

»  An instance of C is a direct instance of a descendant of
C!

20a-26!© Gunnar Gotshalks!

Static & Dynamic Types!

•  Static-dynamic type consistency!
»  An entity declared of type T may, at run time only,

become attached to instances of T 
!

20a-27!© Gunnar Gotshalks!

Static & Dynamic Types – 2!

•  Static-dynamic type consistency!

»  An entity declared of type T may, at run time only, become
attached to instances of T 
!

•  Static type is the type of the variable declared in the
program text 
!

20a-28!© Gunnar Gotshalks!

Static & Dynamic Types – 3!

•  Static-dynamic type consistency!

»  An entity declared of type T may, at run time only, become
attached to instances of T 
!

•  Static type is the type of the variable declared in the program text 
!

•  Dynamic type is the type of the instance attached at
execution time  
!

20a-29!© Gunnar Gotshalks!

Static & Dynamic Types – 4!

•  Static-dynamic type consistency!

»  An entity declared of type T may, at run time only, become
attached to instances of T 
!

•  Static type is the type of the variable declared in the program text 
!

•  Dynamic type is the type of the instance attached at execution time  
!

•  The type of void is NONE!

20a-30!© Gunnar Gotshalks!

Assignment Attempt!

•  Type rules ensure statically verifiable dynamic behaviour!
»  No surprises at run time!

20a-31!© Gunnar Gotshalks!

Assignment Attempt – 2!

•  Type rules ensure statically verifiable dynamic behaviour!

»  No surprises at run time!

•  But type rules are too restrictive, consider!
figlist : LIST [FIGURE]!

» What is the max diagonal of rectangles in the list?!
figure := rectangle ; figure.diagonal  
! Wrong!

20a-32!© Gunnar Gotshalks!

Assignment Attempt – 3!

•  Type rules ensure statically verifiable dynamic behaviour!

»  No surprises at run time!

•  But type rules are too restrictive, consider!
figlist : LIST [FIGURE]!

» What is the max diagonal of rectangles in the list?!
figure := rectangle ; figure.diagonal  
!

»  Cannot resolve as diagonal is not a feature of FIGURE!
>  Do not want to have diagonal as a part of FIGURE as

all figures would need to define it!

Wrong!

20a-33!© Gunnar Gotshalks!

Assignment Attempt – 4!

•  We need to be able, in some circumstances, to know the
dynamic type of an object!

20a-34!© Gunnar Gotshalks!

Assignment Attempt – 5!

•  We need to be able, in some circumstances, to know the dynamic type
of an object!

•  Assignment attempt makes the assignment if the dynamic
and static types conform, otherwise it returns void!

20a-35!© Gunnar Gotshalks!

Assignment Attempt – 6!

•  We need to be able, in some circumstances, to know the dynamic type
of an object!

•  Assignment attempt makes the assignment if the dynamic
and static types conform, otherwise it returns void!

 if attached {SUBTYPE} supertype_object as subtype_object!
 then!

!Use subtype_object here!
 end!
!

20a-36!© Gunnar Gotshalks!

Assignment Attempt Example!

maxdiag (figlist : LIST [FIGURE]) : REAL!
 require list_exists: figlist /= Void!
 do!
 from figlist.start ; Result := 0.0!
 until figlist.after!
 loop!
 if attached {RECTANGLE} figlist.item as r then!
 Result := Result.max (r.diagonal)!
 end!
 figlist.forth!
 end!
 end!

Attempt assignment!

Use when successful!

20a-37!© Gunnar Gotshalks!

Polymorphic Creation!

•  Assume x is of static type T but we want to assign to x an
instance of static type U where U is a descendant of T!

T!

U!

...!
x!

Use!
!
create {U} x.make(…)!
!
!
Obsolescent use of !!!
! U ! x . make (...)!

