
19-1!© Gunnar Gotshalks!

Inheritance!
!

What is it all about?!

19-2!© Gunnar Gotshalks!

On Objects!

•  An Object is a collection of data and methods to operate
on that data!
»  Method is a procedure, function, operation!

•  For a motor!
»  turnOn turnOff setSpeed (someSpeed)!

Data!

Methods!

19-3!© Gunnar Gotshalks!

On Instances!

•  An object is an instance of a class!
»  The class provides the template  

for the object!

•  Template gives!
»  Data types!
»  Methods!

•  Can think of the object as 
having a copy of the methods 
and space for its own data!

Class!

Object!

instance of!

19-4!© Gunnar Gotshalks!

The Real Story on Space!

•  Only the data is unique to the object!

methods!

data!

instance of!

class!

object!

19-5!© Gunnar Gotshalks!

The Real Story – 2!

•  Multiple Instances!
»  Every object has its own data!
»  Objects share methods!

methods!

data 2!

objects!

class!

data 1! data 3!

19-6!© Gunnar Gotshalks!

Message Definition!

•  A message is equivalent to a procedure call!

•  It is the way objects communicate with each other and
request work to be done!

•  We think of the objects as being active!

•  Assume motor is an instance of the class MOTOR!
>  Then typical expressions are:!

   motor . turnOn 
motor . turnOff 
motor . setSpeed (5)!

19-7!© Gunnar Gotshalks!

Message Routing!

•  MOTOR contains method  
turnOn!

•  The message turnOn 
is sent to  
the object motor !
   motor . turnOn!

•  The data in the object 
is used by the method!

methods!

data!

MOTOR!

motor!

turnOn!

19-8!© Gunnar Gotshalks!

Definitions!

•  Inheritance!
»  A class can inherit some of its methods from another

class!
– methods FM ⊃ methods M	

>  It can define its own methods – add methods!
>  It can redefine the methods of the class it is

inheriting from – change semantics NOT interface!

methods FM! methods M!

FORD_MOTOR! MOTOR!inherits from!

19-9!© Gunnar Gotshalks!

Subclass & Superclass!

•  Subclass!
»  Class A is a subclass of class B if A inherits from B!

•  Superclass!
»  Class A is a superclass of class B if B inherits  

from A!

methods FM! methods M!

FORD_MOTOR! MOTOR!inherits from!

Subclass! Superclass!

19-10!© Gunnar Gotshalks!

Message passing with Inheritance!

methods FM! methods M!

FORD_MOTOR! MOTOR!

Data! Data!

turnOn!

Contains turnOn method!
Does not contain 
turnOn method!

19-11!© Gunnar Gotshalks!

Class Hierarchy!

•  Containing class A – includes A and the following!
»  The transitive closure of superclasses of class A!

>  superclasses of A, superclasses of superclass of A,
etc. 
 
 
 
 
 
 
 
!

»  The transitive closure of the subclasses of class A!
>  subclasses of A, subclasses of the subclasses of A,

etc.!

A! ...!

19-12!© Gunnar Gotshalks!

Message Passing in Class Hierarchy!

•  Message passes up the superclass chain until method is
found !

message!
object! Contains the method!

19-13!© Gunnar Gotshalks!

The Real Story on Data!

•  Inheritance means a subclass has available all the
methods of the transitive closure of its superclasses 
!

19-14!© Gunnar Gotshalks!

The Real Story on Data – 2!

•  Inheritance means a subclass has available all the methods of the
transitive closure of its superclasses 
!

•  This implies that an object is comprised of instances of all
the data from the transitive closure of its superclasses!

19-15!© Gunnar Gotshalks!

The Real Story on Data – 3!

•  Inheritance means a subclass has available all the methods of the
transitive closure of its superclasses 
!

•  This implies that an object is comprised of instances of all
the data from the transitive closure of its superclasses!
»  Or else the methods in the superclasses would not have

any data to work on!

19-16!© Gunnar Gotshalks!

Data Story – 2!

»  Instance of B has data from B and A!
»  Instance of C has data from C, B and A!

classes!

inherits! inherits!

A!B!C!

instance of!
class A!

instance of!
class B!

instance of!
class C!

19-17!© Gunnar Gotshalks!

"Is a" Relationship!

•  When class B inherits from class A!
»  B inherits all the methods of A!

19-18!© Gunnar Gotshalks!

"Is a" Relationship – 2!

•  When class B inherits from class A!
»  B inherits all the methods of A!

>  Instances of B can be sent all the messages that A
responds to!

19-19!© Gunnar Gotshalks!

"Is a" Relationship – 3!

•  When class B inherits from class A!

»  B inherits all the methods of A!
>  Instances of B can be sent all the messages that A

responds to!

»  B inherits all the data from A!
>  Instances B have instances of all the data of A!

19-20!© Gunnar Gotshalks!

"Is a" Relationship – 3!

•  When class B inherits from class A!

»  B inherits all the methods of A!
>  Instances of B can be sent all the messages that A

responds to!

»  B inherits all the data from A!
>  Instances B have instances of all the data of A!

»  As a consequence we can say  
 
! B is an A!

19-21!© Gunnar Gotshalks!

"Is a" Relationship – 4!

•  When class B inherits from class A!

»  B inherits all the methods of A!
>  Instances of B can be sent all the messages that A

responds to!

»  B inherits all the data from A!
>  Instances B have instances of all the data of A!

»  As a consequence we can say  
 
!

•  Every instance of B is also an instance of A!
»  Can use B where ever an A can be used!

B is an A!

19-22!© Gunnar Gotshalks!

"Is a" Example!

•  Can say following because all instances are MOTORS!
   a_V6_ford_motor . turnOn 

a_ford_motor . turnOn 
a_motor . turnOn!

A!B!C!

FORD_MOTOR!V6_FORD_MOTOR! MOTOR!

a_motor!
a_ford_motor!

a_V6_ford_motor!

Contains!
turnOn!

19-23!© Gunnar Gotshalks!

"Is a" Example – 2!

•  Can not say following because MOTOR is not a
V6_FORD_MOTOR!
   a_motor . v6_turnOn Invalid, it does not compute!

A!B!C!

FORD_MOTOR!V6_FORD_MOTOR! MOTOR!

a_motor!
a_ford_motor!

a_V6_ford_motor!

Contains!
v6_turnOn!

19-24!© Gunnar Gotshalks!

What is a Meta Class?!

•  What sort of thing is a class?!

19-25!© Gunnar Gotshalks!

What is a Meta Class? – 2!

•  What sort of thing is a class?!
»  It is also an object !!

19-26!© Gunnar Gotshalks!

What is a Meta Class? – 3!

•  What sort of thing is a class?!
»  It is also an object !!
»  Consequently it needs to be an instance of a class!

19-27!© Gunnar Gotshalks!

What is a Meta Class? – 4!

•  What sort of thing is a class?!
»  It is also an object !!
»  Consequently it needs to be an instance of a class!

•  A meta class is the class that has a class as an instance!

19-28!© Gunnar Gotshalks!

What is a Meta Class? – 5!

•  What sort of thing is a class?!
»  It is also an object !!
»  Consequently it needs to be an instance of a class!

•  A meta class is the class that has a class as an instance!

•  There is only one meta class for each class!

19-29!© Gunnar Gotshalks!

What is a Meta Class? – 6!

•  What sort of thing is a class?!
»  It is also an object !!
»  Consequently it needs to be an instance of a class!

•  A meta class is the class that has a class as an instance!

•  There is only one meta class for each class!

Anything you can do, I can do meta.!
!

! ! -- Daniel Dennett!

19-30!© Gunnar Gotshalks!

The Small Picture – Smalltalk OO!

   !

class!

meta!
class! class!

object!

object! object!object!

MOTOR CLASS!

MOTOR!

instances!
of MOTOR!

19-31!© Gunnar Gotshalks!

Meta Class Inheritance – Smalltalk OO!

class!

meta!
class!

object!

class!

meta!
class!

object!

MOTOR CLASS!FORD_MOTOR CLASS!

FORD_MOTOR!

a_ford_motor!

MOTOR!

a_motor!

inherits!

19-32!© Gunnar Gotshalks!

Meta Class Creation – Smalltalk OO!

•  When FORD_MOTOR is created as a subclass of
MOTOR then!
»  Smalltalk automatically creates the meta class

FORD_MOTOR CLASS and makes it a subclass of
MOTOR CLASS!

19-33!© Gunnar Gotshalks!

Meta Class Creation – Smalltalk OO!

•  When FORD_MOTOR is created as a subclass of MOTOR then!

»  Smalltalk automatically creates the meta class FORD_MOTOR
CLASS and makes it a subclass of MOTOR CLASS!

•  Meta class are not directly accessible to the user!

19-34!© Gunnar Gotshalks!

Meta Class Creation – Smalltalk OO!

•  When FORD_MOTOR is created as a subclass of MOTOR then!

»  Smalltalk automatically creates the meta class FORD_MOTOR
CLASS and makes it a subclass of MOTOR CLASS!

•  Meta class are not directly accessible to the user!

BUT meta classes are objects !!!!

19-35!© Gunnar Gotshalks!

The Big Picture – Smalltalk OO!

METACLASS CLASS, is!
a meta class and!
instance of METACLASS!

MOTOR class!

MOTOR!

tangled_12!straight_6!v6!v8!

FORD_MOTOR class!

FORD_MOTOR!

METACLASS, is!
a meta class and !
instance of 
METACLASS CLASS!

19-36!© Gunnar Gotshalks!

Meta Classes Benefits!

•  Benefit!
»  Uniform treatment of all objects!

>  Classes are first class citizens!

19-37!© Gunnar Gotshalks!

Meta Classes Benefits & Drawbacks!

•  Benefit!

»  Uniform treatment of all objects!
>  Classes are first class citizens!

•  Drawback!
»  No strong typing!

>  More difficult to create error free software!

19-38!© Gunnar Gotshalks!

Other Mechanisms!

•  Provide a set of features available to all classes!
»  Eiffel – Put them in a universal ANY class!
»  Java – Put them in a special class CLASS 
!

19-39!© Gunnar Gotshalks!

Other Mechanisms – 2!

•  Operations that characterize a class rather than object!
»  Most obvious is object creation!

>  Eiffel – use special construct create!
>  Java – use special construct new 
!

»  Others can be put into universal class!
>  Eiffel – ANY!
>  Java ???!

19-40!© Gunnar Gotshalks!

Other Mechanisms – 3!

•  Obtain information about a class!
»  Eiffel!

>  stored in one instance of E_CLASS per class  
!

»  Java!
>  class Class<T>!

–  Instances represent classes and interfaces	

–  Use object.getClass() to access the Class	

•  object.getClass().getName() to get the name of the class
to which object belongs	

