
17-1!Gunnar Gotshalks!

BON!
!

Business Object Notation!
!

17-2!Gunnar Gotshalks!

What is it?!

•  Notation for modeling object oriented software!

17-3!Gunnar Gotshalks!

What is it? – 2!

•  Notation for modeling object oriented software!
»  Static: specifies classes, class relationships!

17-4!Gunnar Gotshalks!

What is it? – 3!

•  Notation for modeling object oriented software!
»  Static: specifies classes, class relationships!
»  Dynamic: behavioural properties  
!

17-5!Gunnar Gotshalks!

What is it? – 4 !

•  Notation for modeling object oriented software!

»  Static: specifies classes, class relationships!

»  Dynamic: behavioural properties  
!

•  Method!
»  Guidelines to be used when producing specifications

and descriptions  
!

17-6!Gunnar Gotshalks!

What is it? – 5 !

•  Notation for modeling object oriented software!

»  Static: specifies classes, class relationships!

»  Dynamic: behavioural properties  
!

•  Method!

»  Guidelines to be used when producing specifications and
descriptions  
!

»  Does not include!
»  Entity-Relation models!
»  Finite state machines!

17-7!Gunnar Gotshalks!

Characteristics of the Notation!

•  Simplicity!
»  Concentrate on design aspects of the method 

!

!

17-8!Gunnar Gotshalks!

Characteristics of the Notation – 2!

•  Simplicity!
»  Concentrate on design aspects of the method 
!

•  Generality!
»  Not restricted to application domains  

!

17-9!Gunnar Gotshalks!

Characteristics of the Notation – 3!

•  Simplicity!
»  Concentrate on design aspects of the method 
!

•  Generality!
»  Not restricted to application domains  
!

•  Design by Contract!
»  Assertions for classes and features  

!

!

17-10!Gunnar Gotshalks!

Characteristics of the Notation – 4!

•  Simplicity!
»  Concentrate on design aspects of the method 
!

•  Generality!
»  Not restricted to application domains  
!

•  Design by Contract!
»  Assertions for classes and features  
!

•  Two views!
»  Graphical!
»  Textual Eiffel!
!

→

17-11!Gunnar Gotshalks!

Characteristics of the Notation – 5!

•  Seamlessness!
»  Smooth transition from requirements through design to

implementation all in one form of model 
!

17-12!Gunnar Gotshalks!

Characteristics of the Notation – 6!

•  Seamlessness!

»  Smooth transition from requirements through design to
implementation all in one form of model 
!

•  Reversibility!
»  Direct mapping of design concepts to and from

implementation concepts  
!

17-13!Gunnar Gotshalks!

Characteristics of the Notation – 7!

•  Seamlessness!

»  Smooth transition from requirements through design to
implementation all in one form of model 
!

•  Reversibility!

»  Direct mapping of design concepts to and from
implementation concepts  
!

•  Scalability!
»  Scales up to large designs!

17-14!Gunnar Gotshalks!

Tool Support!

•  Bon tools!

•  Eiffel diagrams!
!

17-15!Gunnar Gotshalks!

Compressed Classes!

!Use to draw views with lots 
of classes 

!• bird's eye view  
!• early stages of design!

NAME!

NAME [G, H]!

NAME!

NAME!

NAME!

Shortest form!

NAME! Reused library!

NAME!*!

NAME!
+!

Deferred!

Implemented!

Persistent!
Inherit STORABLE!

Interfaces with!
outside world!

Parameterized!

Root!
Instances may be!
separate processes!

17-16!Gunnar Gotshalks!

Inheritance Relations!

*!
PEOPLE!

+!
OLD_PEOPLE!+!

YOUNG_PEOPLE!

++!
TEEN_AGERS!

++!
PRE_TEEN!

++!
TODDLERS!

17-17!Gunnar Gotshalks!

Client–Supplier Association!

!Client A uses the services of supplier B!
!Each client instance may be attached to one or more
supplier instances!

PERSON! ADDRESS! CITY!
has a! has a!

17-18!Gunnar Gotshalks!

Client–Supplier Aggregation!

!Client A uses the services of supplier B!
!Each client instance is attached to one or more
supplier instances that represent integral parts of the
client instance  
!

Difference between association and aggregation?!
• Consider expanded vs reference use!
• Consider what happens when the client gets deleted!

VEHICLE! MOTOR! CYLINDER!
part of! part of!

propulsion! combustion_chamber!

17-19!Gunnar Gotshalks!

Bidirectional Uses Links!

•  Client feature label is at the supplier side!
•  Generic classes can be used in labels!

!Leave parameter unspecified!

•  Useful for recursive structures!
!lists, trees, graphs!

CUSTOMER!

SHOPPING_CENTER!

preferred_mall!

shoppers [...]!

17-20!Gunnar Gotshalks!

Cluster!

•  Represents a group of classes, and possibly other
clusters, according to some point of view!

•  Classes may be grouped differently depending on the
characteristics of the specification one wants to highlight!
»  Subsystem functionality, user categories, abstraction

level, et cetera!

17-21!Gunnar Gotshalks!

GRAPHS!

Cluster Example!

SORTING!

DATA_STRUCTURES!

LINEAR_SORT!
QUICKSORT!

GRAPH!
DIRECTED_GRAPH!

WEIGHTED_GRAPH!

ARRAY! RECORD!

INSERT_SORT!

17-22!Gunnar Gotshalks!

Cluster Properties!

•  Clusters can be shrunk to hide their contents!
»  Keep only the cluster name!

17-23!Gunnar Gotshalks!

Cluster Properties – 2!

•  Clusters can be shrunk to hide their contents!

»  Keep only the cluster name!

•  Every class belongs to exactly one cluster!

17-24!Gunnar Gotshalks!

Cluster Properties – 3!

•  Clusters can be shrunk to hide their contents!

»  Keep only the cluster name!

•  Every class belongs to exactly one cluster!

•  Not a language construct; just a mechanism for dealing
with abstraction!

17-25!Gunnar Gotshalks!

Cluster Properties – 4!

•  Clusters can be shrunk to hide their contents!

»  Keep only the cluster name!

•  Every class belongs to exactly one cluster!

•  Not a language construct; just a mechanism for dealing with abstraction!

•  Implement in Eiffel with directory structure!
»  Each cluster is a directory!

17-26!Gunnar Gotshalks!

Inheritance & Clusters!

•  All classes in sorting inherit from ARRAY!

•  Only DIRECTED_GRAPH inherits from ARRAY!

SORTING!

LINEAR_SORT!

INSERT_SORT!

DIRECTED_GRAPH!

WEIGHTED_GRAPH!

ARRAY!

GRAPHS!

17-27!Gunnar Gotshalks!

Graphical BON Class (Uncompressed)!

?!
!!

CITIZEN!

name, sex, age : VALUE!
spouse : CITIZEN!
children, parents : SET [CITIZEN]!
!
single : BOOLEAN!
 Result (spouse = Void)  
 
divorce!
 not single!
 single and (old spouse).single!

!!

invariant!

single or spouse.spouse = @!
parents.count = 2!
 c children • (p c.parents • p = @) !

No need to show all
features, just those
of interest for the
view

∀ ∈

↔

∃ ∈

17-28!Gunnar Gotshalks!

Assertion Language!

•  Queries and commands can be documented with a
precondition and a postcondition!

•  Follow Eiffel language with respect to inheritance and
redefinition of assertions!

•  Use predicate calculus and set theory!

Graphical Form! Textual Form!

precondition!

postcondition!
the_invariant!

require precondition!

ensure postcondition!

?!

!!

invariant the_invariant!

17-29!Gunnar Gotshalks!

Typed Class Interface!

•  Early phases concentrate on public 
features!

•  Restricted features produced  
during detail design!

•  Arbitrary number of sections, each  
with export list!

•  Each feature has a signature and  
optionally a behavioural specification!

•  Conventions!
»  Classes all in upper case!
»  features all in lower case!
»  use underscore for longer names!

NAME!

Inherits:!
 parent classes!

Public features!

 A, B, C !
Restricted
features!

 Invariant!
Class!
invariant!

17-30!Gunnar Gotshalks!

Class Feature Decorators!

Feature names have an optional decorator showing status!
name* – deferred !
name+ – effective!
name++ – redefined!
name : TYPE – result type  
!

new_name { ^ CLASS_NAME . old_name } ! !
! ! ! ! !– rename clause!

name : { TYPE – aggregation result type!
 name : TYPE – input argument!→

17-31!Gunnar Gotshalks!

Class Feature Signatures!

•  Each feature has a signature!
!attributes & no parameter queries  
! name : TYPE!
!queries  
 name (arg : ARG_TYPE; ...) : RESULT_TYPE!
!commands 
 name (arg : ARG_TYPE; ...) 
!

•  Types may be expanded types!

17-32!Gunnar Gotshalks!

Graphical View Rule!

Graphical view is not used for just one class!

Always have two or more classes with
inheritance and/or uses relations among them!

17-33!Gunnar Gotshalks!

Views Show Part of a Design!

reviewer : PERSON!
score : VALUE!
comments : TEXT!

REVIEW!
•!

invariant!
score in { A, ... , D }!

copyright_transferred : BOOLEAN!
reviews : SET [REVIEW]!
award_best_paper!
accept+!
reject+!

PAPER!
•!

received : DATE!
review_started : DATE!
accepted : DATE!
rejected : DATE!
final_received : DATE!

STATUS!•!

invariant!
received <= review_started!
review_started <= final_received!
accepted = {} or rejected = {}!

title : VALUE!
code : VALUE!

PRESENTATION!•!

invariant!
 p,q : PRESENTATION |!
 p ≠ q • p.code ≠ q.code and!
 p.title ≠ q.title!

PAPER_!
SESSION!

•!

TUTORIAL!
•!

SESSION!

TUTORIAL_!
SESSION!

•!

∀

