Design by Contract

Building Reliable Software

A verbal contract isn't worth the paper it's written on.

— Samuel Goldwyn

© Gunnar Gotshalks 15-1

Contracts and Quality Assurance

Contracts enable QA activities to be based on a precise description of
what they expect.

Profoundly transform the activities of testing, debugging and
maintenance.

(g "I believe that the use of Eiffel-like module contracts is rhe\
most important non-practice in software world today. By that I mean
there is no other candidate practice presently being urged upon us
that has greater capacity to improve the quality of software
produced. ... This sort of contract mechanism is the sine-qua-non of

"

\senS/b/e software reuse. ,/‘

Tom de Marco, IEEE Computer, 1997

Slide 228 from Bertrand Meyer 15-2

Software Correctness Property

e Correctness is a relative notion
» A program is correct with respect to its specification

» To be correct a program must correspond with its
specification

> print("Hello world")

e Is neither correct nor incorrect

e Correspondence is one of the cornerstones of building
reliable software

» Viewing the system — or part of it — from different
perspectives without contradiction

© Gunnar Gotshalks

15-3

Correctness Formulae

{ Pre } A{ Post}

e A is some operation

» One or more program text statements, including
procedure calls

* Pre & Post are the preconditions and postconditions for
the operation

Any execution of A, starting in a state where
Pre holds, will terminate in a state where
Post holds

© Gunnar Gotshalks 15-4

{P}A{Q}

e Also called Hoare triples
» Mathematical notation
» P & Q are assertions
e Example
{x29} x:=x+5 {x=212}
> Note assertions only need to be true

> Can assertions be good? the best?

> What do we mean by good with respect to
assertions?

© Gunnar Gotshalks

15-5

Weak and Strong Assertions

e Suppose you are given a set of integers
» {248 16 32 ... }

e An assertion can be used to describe the integers in the
set

» 1 — a set of some integers
> { p: INTEGER - p} Weaker
» 2 —a set of even integers
> {p:INTEGER | pmod2=0- p}
» 3 —a set of powers of two

> { p: INTEGER - 2* p}

v

: . Stronger
» 4 — set of powers of two with positive exponent

> {p:INTEGER | p>0-2*p}

© Gunnar Gotshalks 15-6

Weak and Strong Assertions — 2

e The stronger the assertion the closer the description
comes to specifying the actual set

e |n general

» Weak assertions describe bigger sets than strong
assertions

e |n programming

» The weaker the assertion the more cases that must be
handled

> For precondition — more input states

> For postcondition — more output states

© Gunnar Gotshalks

15-7

Job Hunting

{P}A{Q}

e Suppose you are looking for a job where you have to do A
» If P is weak you have to handle many cases

» if P is strong you have fewer cases to handle

e \What do you look for to make your job easier?

e What does the employer look for to get the most work out
of you?

© Gunnar Gotshalks 15-8

Job Hunting — Preconditions

{P}A{Q}

e What is the strongest?

» Who wants this?

e \What is the weakest?

» Who wants this?

© Gunnar Gotshalks 15-9

Strongest Precondition

{False } A{...}

e No input condition is acceptable

» You do not have to do any work as the conditions are
never right for you to do anything

» Independent of postcondition — A is never executed

e The supplier — you — has no responsibility, do no work —
take the job !!!

e The client — employer — has all the responsibility, has to do
all the work as they get no work out of you

© Gunnar Gotshalks 15-10

Weakest Precondition

{True}A{Q}

e Any input condition is acceptable

» As an employee you have to handle all possible
situations to make Q true

> This is the most work on your part — if you are lazy
you, stay away from this job

> The employer loves this, they get the most out of you

e The supplier — you — does all the work and has all the
responsibility — taking the job depends upon Q

* The client — employer — has no responsibility, does no
work

© Gunnar Gotshalks 15-11

Precondition Conclusions

e The stronger the precondition the better for the supplier,
the worse for the client

e There is a tradeoff

e |n practice

» Have the weakest precondition that makes the task
feasible

> Satisfy the most clients

> Supplier is able to satisfy the postcondition with
reasonable effort

© Gunnar Gotshalks 15-12

Job Hunting — Postconditions

{P}A{Q}

e \What is the weakest?

» Who wants this?

e What is the strongest?

» Who wants this?

© Gunnar Gotshalks 15-13

Weakest Postcondition

{..}A{True}

e All output conditions are acceptable

» You have an easy job, as anything you do is acceptable
as long as you do something

» Independent of precondition — input not linked to output

e The supplier — you — has minimum responsibility, do
minimum work — next best thing to strongest
precondition

e The client — employer — has all the responsibility, has to do
all the work as they may not get any useful work out of you

© Gunnar Gotshalks 15-14

Strongest Postcondition

{..}A{False}

e No output condition is acceptable

» You have to work forever without achieving your goal,
you are doomed to failure

e The supplier — you — does all the work and has all the
responsibility but never achieve anything

e The client — employer — has no responsibility, does no
work but does not get anything done

Strongest postcondition is actually not good for either
supplier or client

© Gunnar Gotshalks

15-15

Postcondition Conclusions

e The stronger the postcondition the better for the client, the
worse for the supplier

e There is a tradeoff

e |n practice

» Have the strongest postcondition that makes the task
feasible

> Satisfy the most clients

> Supplier is able to satisfy the postcondition with
reasonable effort

© Gunnar Gotshalks 15-16

Benefits & Obligations

Obligations Benefits
Client from preconditions from postconditions
row & col are in range get requested element
iIf it exists
Supplier | from postconditions from preconditions
return requested knows row and col
element, if it exists are in range

© Gunnar Gotshalks 15-17

Get more — check less

e |ess programming — Non Redundancy Principle

» Under no circumstances shall the body of a routine ever
test for the routine's precondition

» Redundancy leads

> software bloat

— both size & execution time
> complexity

> more sources of error

e Clearly indicate who has what responsibility
» supplier

» client

© Gunnar Gotshalks 15-18

??? Defensive Programming ?7??

e Opposite of design by contract

» Every routine checks its input irregardless of
preconditions

> Effectively precondition is the weakest — True

e Every one is responsible
==> N0 one accepts responsibility

» Can always point to someone else

e Need the notion of

» The buck stops here

e Defensive programming is un-defendable

© Gunnar Gotshalks 15-19

Not Input Checking

e (Contracts are about software <-> software
communication

» NOT the following
> software <-> human

> software <-> real world

e Example input routine
» require: numeric key to be pressed

> Wishful thinking — cannot guarantee person will only
press numeric key

> Not a contract

» Can only expect any key may be pressed

© Gunnar Gotshalks 15-20

Input Subsystem

Convert unreliable
real world message
to reliable
system message

Within system
have design
by contract

Input Subsystem

© Gunnar Gotshalks 15-21

Assertion Violation Rules

e Rule 1

» A run time assertion violation is the manifestation of a
bug in the software

e Rule?2

» A precondition violation is the manifestation of a bug in
the client

» A postcondition violation is the manifestation of a bug
in the supplier

© Gunnar Gotshalks 15-22

Definitions

e Error
» A wrong decision made during software development
e Defect — bug sometimes means this
— The term Fault is also used

» Property of software that may cause the system to deviate
from its intended behaviour

e Fault — bug sometimes means this

— The term Failure is also used

» The event in which software deviates from its intended
behaviour

Error ==> Defect ==> Fault
Error ==> Fault ==> Failure

© Gunnar Gotshalks

15-23

Imperative vs Applicative

full : BOOLEAN
do

Result := (count = capacity)
ensure Result = (count = capacity)
end

* Not redundant
» Body is imperative — a description of how
> Computing — changes state
» Ensure is applicative — a description of what

> Mathematics — does not change state

— It is either true or false

© Gunnar Gotshalks

15-24

Imperative vs Applicative — 2

e Alternate bodies are possible

If count = capacity then Result := True
else Result :=false end

If count = capacity then Result := True end

© Gunnar Gotshalks 15-25

Terminology

Computing Mathematics

Implementation Specification

Instruction Expression
How What
Imperative Applicative

N

Prescription Description

© Gunnar Gotshalks 15-26

Reasonable Preconditions

e Preconditions appear in the official documentation given to
clients

e Possible to justify the need for the preconditions in terms
of the specification only

e Every feature appearing in preconditions are available to

every client to which the feature is available

» NO surprises

© Gunnar Gotshalks 15-27

Correctness of a Class

e A class C is correct with respect to its assertions if and
only if

For any valid set of arguments Ap to a creation
procedure P

C1 {Defc and prep (Ap) } Bodyp {postp (Ap) and inv}

e Where
Def c assert attributes of C have default values
pre p are the preconditions of P
post p are the postconditions of P

inv are the class invariants

© Gunnar Gotshalks

15-28

Correctness of a Class — 2

C2

For every exported routine R and any set of valid

arguments AR

{ preR(AR) and inv } BodyR{ postR (AR) and inv}

e Where

pre R are the preconditions of R

post R are the postconditions of R

inv are the class invariants

© Gunnar Gotshalks

15-29

Contract Guidelines — Class Invariant

e Develop first

e Show invariant properties of individual attributes

e Show as many invariant relationships among the attributes
as possible

© Gunnar Gotshalks 15-30

Contract Guidelines — Class Invariant — 2

e Most important to show the important and non-obvious
relationships

» Even iIf it means some redundancy

» Point is not to give the logical minimum but to convey
information to all users

> both developers and clients

e As contracts for routines are developed consider general
cases that may be put into class invariants

© Gunnar Gotshalks 15-31

Contract Guidelines — Precondition

e Parameter-less functions can be called at any time
» Precondition is always true

> As a consequence, redundant to state

e Parameter-less procedures may have preconditions on the
state or may not

» As a consequence, must always assert a precondition,
even if the assertion is "True”

© Gunnar Gotshalks 15-32

Contract Guidelines — Precondition — 2

e Routines with parameters typically have conditions on the
parameters and on the state

» As a consequence, must always assert a precondition,
even if the assertion is "True”

e Give the weakest reasonable precondition

» The routines will be of most use to clients

© Gunnar Gotshalks 15-33

Contract Guidelines — Precondition — 3

e All features in the precondition must be exported to the
client

» They must be able to execute the precondition to be
sure that it is true before calling the routine.

e (Class invariants are implicitly a part of the precondition
» But the client is not responsible for satisfying them

> that is a responsibility of the supplier

© Gunnar Gotshalks

15-34

Contract Guidelines — Postcondition

e Postconditions involve all the parameters and state
» Consider all possible relationships
» Specify everything that changes
» Specify everything that does not change

> Default

— if no change is not mentioned, then arbitrary change,
including no change, is permitted

e For functions

» Must precisely specify the value of Result

© Gunnar Gotshalks 15-35

Contract Guidelines — Postcondition — 2

e Qive the strongest reasonable postcondition

» Most informative to clients

e (Class invariants are implicitly a part of the postcondition

» Normally not repeated but in important and non-obvious
cases redundancy may be good to have

> Particularly important if there are many class
invariants and only one or two apply that may be
forgotten.

© Gunnar Gotshalks 15-36

Contract Guidelines — Postcondition — 3

e Features in the postcondition do not need to be exported
to the client

» Clients do not execute postconditions
» Some postconditions are implementation dependent

> Developer wants to make sure the implementation is
correct — must be able to reference non-exported
features

» But will involve some exported features as clients need
to understand what the routine does.

© Gunnar Gotshalks 15-37

Contract Guidelines

e (Contracts are the equivalent of security

» Need to think of how security could be broken and
prevent it

© Gunnar Gotshalks 15-38

Contract Guidelines — 2

e Cannot specify everything
» Too much to specify

> Need to leave some things to good practice

— E.g. non-change is often left as a comment, as formal
specification can be too cumbersome and non-change is
common practice in the given context

» Concentrate on
> most important assertions

> hon-obvious assertions

© Gunnar Gotshalks 15-39

