
15-1!© Gunnar Gotshalks!

Design by Contract!
!

Building Reliable Software!

!
A verbal contract isn't worth the paper it's written on.!
!

! ! ! !– Samuel Goldwyn!
!

15-2!© Gunnar Gotshalks!

Contracts and Quality Assurance!

Slide 228 from Bertrand Meyer!

15-3!© Gunnar Gotshalks!

Software Correctness Property!

•  Correctness is a relative notion!
»  A program is correct with respect to its specification!

»  To be correct a program must correspond with its
specification!

>  print("Hello world")!
•  Is neither correct nor incorrect ���
	

•  Correspondence is one of the cornerstones of building
reliable software!
»  Viewing the system – or part of it – from different

perspectives without contradiction!

15-4!© Gunnar Gotshalks!

Correctness Formulae!

•  A is some operation!
»  One or more program text statements, including

procedure calls!

•  Pre & Post are the preconditions and postconditions for
the operation!

{ Pre } A { Post }!

Any execution of A, starting in a state where!
Pre holds, will terminate in a state where  
Post holds!

15-5!© Gunnar Gotshalks!

{ P } A { Q }!

•  Also called Hoare triples !
»  Mathematical notation!

»  P & Q are assertions!

•  Example!

   { x ≥ 9 } x : = x + 5 { x ≥ 12 }!

>  Note assertions only need to be true!

>  Can assertions be good? the best?!

>  What do we mean by good with respect to
assertions?!

15-6!© Gunnar Gotshalks!

Weak and Strong Assertions!

•  Suppose you are given a set of integers!
»  { 2 4 8 16 32 ... }!

•  An assertion can be used to describe the integers in the
set!
»  1 – a set of some integers!

>  { p: INTEGER • p }!

»  2 – a set of even integers!

>  { p: INTEGER | p mod 2 = 0 • p }!

»  3 – a set of powers of two!

>  { p: INTEGER • 2 ** p }!

»  4 – set of powers of two with positive exponent!

>  { p: INTEGER | p > 0 • 2 ** p }!

Stronger!

Weaker!

15-7!© Gunnar Gotshalks!

Weak and Strong Assertions – 2!

•  The stronger the assertion the closer the description
comes to specifying the actual set!

•  In general!
» Weak assertions describe bigger sets than strong

assertions!

•  In programming!
»  The weaker the assertion the more cases that must be

handled!

>  For precondition – more input states!

>  For postcondition – more output states!

15-8!© Gunnar Gotshalks!

Job Hunting!

•  Suppose you are looking for a job where you have to do A !
»  If P is weak you have to handle many cases!

»  if P is strong you have fewer cases to handle  
!

•  What do you look for to make your job easier?  
!

•  What does the employer look for to get the most work out
of you?!

{ P } A { Q }!

15-9!© Gunnar Gotshalks!

Job Hunting – Preconditions!

•  What is the strongest?!
» Who wants this?!

•  What is the weakest?!
» Who wants this?!

{ P } A { Q }!

15-10!© Gunnar Gotshalks!

Strongest Precondition!

•  No input condition is acceptable!
»  You do not have to do any work as the conditions are

never right for you to do anything!

»  Independent of postcondition – A is never executed 
!

•  The supplier – you – has no responsibility, do no work –
take the job !!! 
!

•  The client – employer – has all the responsibility, has to do
all the work as they get no work out of you!

{ False } A { ... }!

15-11!© Gunnar Gotshalks!

Weakest Precondition!

•  Any input condition is acceptable!
»  As an employee you have to handle all possible

situations to make Q true!

>  This is the most work on your part – if you are lazy
you, stay away from this job!

>  The employer loves this, they get the most out of you!

•  The supplier – you – does all the work and has all the
responsibility – taking the job depends upon Q!

•  The client – employer – has no responsibility, does no
work!

{ True } A { Q }!

15-12!© Gunnar Gotshalks!

Precondition Conclusions!

•  The stronger the precondition the better for the supplier,
the worse for the client 
!

•  There is a tradeoff 
!

•  In practice!
»  Have the weakest precondition that makes the task

feasible!

>  Satisfy the most clients!

>  Supplier is able to satisfy the postcondition with
reasonable effort !

15-13!© Gunnar Gotshalks!

Job Hunting – Postconditions!

•  What is the weakest?!
» Who wants this?!

•  What is the strongest?!
» Who wants this?!

{ P } A { Q }!

15-14!© Gunnar Gotshalks!

Weakest Postcondition!

•  All output conditions are acceptable!
»  You have an easy job, as anything you do is acceptable

as long as you do something!

»  Independent of precondition – input not linked to output!

•  The supplier – you – has minimum responsibility, do
minimum work – next best thing to strongest
precondition!

•  The client – employer – has all the responsibility, has to do
all the work as they may not get any useful work out of you!

{ ... } A { True }!

15-15!© Gunnar Gotshalks!

Strongest Postcondition!

•  No output condition is acceptable!
»  You have to work forever without achieving your goal,

you are doomed to failure!

•  The supplier – you – does all the work and has all the
responsibility but never achieve anything!

•  The client – employer – has no responsibility, does no
work but does not get anything done!

{ ... } A { False }!

Strongest postcondition is actually not good for either!
supplier or client!

15-16!© Gunnar Gotshalks!

Postcondition Conclusions!

•  The stronger the postcondition the better for the client, the
worse for the supplier 
!

•  There is a tradeoff 
!

•  In practice!
»  Have the strongest postcondition that makes the task

feasible!

>  Satisfy the most clients!

>  Supplier is able to satisfy the postcondition with
reasonable effort !

15-17!© Gunnar Gotshalks!

Benefits & Obligations!

Obligations! Benefits!

Client!

Supplier!

from preconditions!
row & col are in range!

from postconditions!
get requested element 
if it exists!

from postconditions!
return requested!
element, if it exists!

from preconditions!
knows row and col  
are in range!

15-18!© Gunnar Gotshalks!

Get more – check less!

•  Less programming – Non Redundancy Principle!
»  Under no circumstances shall the body of a routine ever

test for the routine's precondition!

»  Redundancy leads!

>  software bloat!
–  both size & execution time	

>  complexity!

>  more sources of error!

•  Clearly indicate who has what responsibility!
»  supplier!

»  client!

15-19!© Gunnar Gotshalks!

??? Defensive Programming ???!

•  Opposite of design by contract!
»  Every routine checks its input irregardless of

preconditions!

>  Effectively precondition is the weakest – True!

•  Every one is responsible  
! !==> No one accepts responsibility!

»  Can always point to someone else!

•  Need the notion of!
»  The buck stops here!

•  Defensive programming is un-defendable!

15-20!© Gunnar Gotshalks!

Not Input Checking!

•  Contracts are about software <-> software
communication!
»  NOT the following!

>  software <-> human!

>  software <-> real world!

•  Example input routine!
»  require: numeric key to be pressed!

>  Wishful thinking – cannot guarantee person will only
press numeric key!

>  Not a contract!

»  Can only expect any key may be pressed!

15-21!© Gunnar Gotshalks!

Input Subsystem!

Input Subsystem!

System!

Convert unreliable!
real world message!
to reliable!
system message!

M!

M!

Within system!
have design!
by contract!

15-22!© Gunnar Gotshalks!

Assertion Violation Rules!

•  Rule 1!
»  A run time assertion violation is the manifestation of a

bug in the software  
!

•  Rule 2!
»  A precondition violation is the manifestation of a bug in

the client!

»  A postcondition violation is the manifestation of a bug
in the supplier!

15-23!© Gunnar Gotshalks!

Definitions!

•  Error!

»  A wrong decision made during software development!

•  Defect – bug sometimes means this!
–  The term Fault is also used	

»  Property of software that may cause the system to deviate
from its intended behaviour!

•  Fault – bug sometimes means this!
–  The term Failure is also used	

»  The event in which software deviates from its intended
behaviour!

Error ==> Defect ==> Fault!
Error ==> Fault ==> Failure!

15-24!© Gunnar Gotshalks!

Imperative vs Applicative!

•  Not redundant!
»  Body is imperative – a description of how!

>  Computing – changes state !

»  Ensure is applicative – a description of what!

>  Mathematics – does not change state!
–  It is either true or false	

full : BOOLEAN!
do!
 Result := (count = capacity)!
ensure Result = (count = capacity)!
end!

15-25!© Gunnar Gotshalks!

Imperative vs Applicative – 2!

•  Alternate bodies are possible!

if count = capacity then Result := True!
 else Result := false end 
 
 
 if count = capacity then Result := True end!

15-26!© Gunnar Gotshalks!

Terminology!

Implementation!
!
Instruction!
 
How!
 
Imperative!
 
Prescription!

Specification 
 
Expression!
 
What!
 
Applicative!
 
Description!

Computing! Mathematics!

15-27!© Gunnar Gotshalks!

Reasonable Preconditions!

•  Preconditions appear in the official documentation given to
clients 
!

•  Possible to justify the need for the preconditions in terms
of the specification only 
!

•  Every feature appearing in preconditions are available to
every client to which the feature is available!
»  No surprises!

15-28!© Gunnar Gotshalks!

Correctness of a Class!

•  A class C is correct with respect to its assertions if and
only if!
   For any valid set of arguments A p to a creation 

procedure P!

   {Def C and pre p (A P) } Body P {post P (A P) and inv}!

•  Where!
   Def C assert attributes of C have default values!

   pre P are the preconditions of P!

   post P are the postconditions of P!

   inv are the class invariants!

C1!

15-29!© Gunnar Gotshalks!

Correctness of a Class – 2!

   For every exported routine R and any set of valid
arguments A R  
!

   { pre R (A R) and inv } Body R { post R (A R) and inv}!

•  Where!
   pre R are the preconditions of R!

   post R are the postconditions of R!

   inv are the class invariants!

C2!

15-30!© Gunnar Gotshalks!

Contract Guidelines – Class Invariant!

•  Develop first!

•  Show invariant properties of individual attributes!

•  Show as many invariant relationships among the attributes
as possible!

15-31!© Gunnar Gotshalks!

Contract Guidelines – Class Invariant – 2!

•  Most important to show the important and non-obvious
relationships!
»  Even if it means some redundancy!
»  Point is not to give the logical minimum but to convey

information to all users!
>  both developers and clients!

•  As contracts for routines are developed consider general
cases that may be put into class invariants!

15-32!© Gunnar Gotshalks!

Contract Guidelines – Precondition!

•  Parameter-less functions can be called at any time!
»  Precondition is always true!

>  As a consequence, redundant to state!

•  Parameter-less procedures may have preconditions on the
state or may not!
»  As a consequence, must always assert a precondition,

even if the assertion is "True”!

15-33!© Gunnar Gotshalks!

Contract Guidelines – Precondition – 2!

•  Routines with parameters typically have conditions on the
parameters and on the state!
»  As a consequence, must always assert a precondition,

even if the assertion is "True”!

•  Give the weakest reasonable precondition!
»  The routines will be of most use to clients!
!

15-34!© Gunnar Gotshalks!

Contract Guidelines – Precondition – 3!

•  All features in the precondition must be exported to the
client!
»  They must be able to execute the precondition to be

sure that it is true before calling the routine.!

•  Class invariants are implicitly a part of the precondition!
»  But the client is not responsible for satisfying them!

>  that is a responsibility of the supplier!

15-35!© Gunnar Gotshalks!

Contract Guidelines – Postcondition!

•  Postconditions involve all the parameters and state!
»  Consider all possible relationships!
»  Specify everything that changes!
»  Specify everything that does not change!

>  Default!
–  if no change is not mentioned, then arbitrary change,

including no change, is permitted	

•  For functions!
»  Must precisely specify the value of Result!

15-36!© Gunnar Gotshalks!

Contract Guidelines – Postcondition – 2!

•  Give the strongest reasonable postcondition!
»  Most informative to clients!

•  Class invariants are implicitly a part of the postcondition!
»  Normally not repeated but in important and non-obvious

cases redundancy may be good to have!
>  Particularly important if there are many class

invariants and only one or two apply that may be
forgotten.!

15-37!© Gunnar Gotshalks!

Contract Guidelines – Postcondition – 3!

•  Features in the postcondition do not need to be exported
to the client!
»  Clients do not execute postconditions!
»  Some postconditions are implementation dependent!

>  Developer wants to make sure the implementation is
correct – must be able to reference non-exported
features!

»  But will involve some exported features as clients need
to understand what the routine does.!

15-38!© Gunnar Gotshalks!

Contract Guidelines!

•  Contracts are the equivalent of security!
»  Need to think of how security could be broken and

prevent it!

15-39!© Gunnar Gotshalks!

Contract Guidelines – 2!

•  Cannot specify everything!
»  Too much to specify!

>  Need to leave some things to good practice!
–  E.g. non-change is often left as a comment, as formal

specification can be too cumbersome and non-change is
common practice in the given context	

»  Concentrate on!

>  most important assertions!

>  non-obvious assertions!

