
12-1© Gunnar Gotshalks

Abstract Data Types
&

Bottom Up Design

12-2© Gunnar Gotshalks

Bottom Up Design

• Defining the objects (abstract data types) to be used in a
program.

» Defining the logical data structures and operations on
objects which are anticipated to be required for some
higher level algorithm.

• Difficulty and art occur when you need to decide what

» finding the relevant object types

» deciding on what operations the objects should have

12-3© Gunnar Gotshalks

Bottom Up Design – 2

• Other issues

» How to describe the object types

» How to describe the relations and communications
between object types

» How to use object types to structure software

12-4© Gunnar Gotshalks

Object Motto

Ask not first what the system does –
Ask what it does it to

12-5© Gunnar Gotshalks

On OO Software Construction

The software development method which
bases the architecture of any software
system on modules deduced from the
types of the objects it manipulates (rather
than the function or functions that the
system is intended to ensure)

12-6© Gunnar Gotshalks

Historical Note

 Languages have few builtin data types because in the
early days it was thought there were few data types and
relatively many functions.

 Now we see that there are many data types and relatively
few functions

12-7© Gunnar Gotshalks

Abstract Data Types

• Logical constructs which model, or represent, portions of
the real world.

» What are they?

» Of what use are they?

» What do you do with them?

» How are they represented in programs?

» How are they documented?

12-8© Gunnar Gotshalks

Abstract Data Types – 2

• A major advantage is to partition the solution to a problem
into independent parts or modules.

» Each module can be used in different contexts with little
or no modification

> Able to construct larger programs and more
programs with fewer resources.

» More confident that the programs are robust, and fulfil
your expectations and specifications.

» Each module can evolve independently as long as the
interfaces remain unchanged.

12-9© Gunnar Gotshalks

Example – 1

• An abstract data type for a motor

» Objects

> on/off switch
motor speed setting
forward/reverse gear

» Operations
> Enquiry – on-off?

 forward-reverse?
> Read – speed
> Write (Modify) – change speed

 turn on, turn off
 change direction.

12-10© Gunnar Gotshalks

Example – 2

• An abstract data type for playing cards

» Objects

> each card, the entire deck
a hand, a trick, a deal

» Operations
> Enquiry – full deck? number of cards in a hand?

number of tricks played?
> Read – the cards in a hand, the high card in a trick
> Write – deal a hand, play a card

> Reorganize – shuffle deck, sort the card

12-11© Gunnar Gotshalks

ADT definition

• A model of a set of objects together with a set of
operations on them

» ADT ::= < objects , operations >

• Abstract ==> model subset of all possible properties

• Objects are nouns, operations are verbs

> Only a first approximation but useful at the boundary
with the world

• Any collection of nouns and verbs is an ADT

» Difficulty is to define good and useful ADTs

12-12© Gunnar Gotshalks

ADTs & Abstraction

• Bank deals with customers and their accounts

• Bank does not care

» How the customer arrived at the bank

» What the customer ate for breakfast

» What the customer is wearing

• Abstractly, a customer is an object that sends messages
deposit, withdraw and "what is the account balance?"

12-13© Gunnar Gotshalks

ADTs & Abstraction – 2

• An ADT is designed for users who require convenient and
useful set of operations on objects that are complex

• The definition of an ADT is a specification of the properties
that govern the abstract objects

12-14© Gunnar Gotshalks

On Objects

• Partition the objects into two sets

> Guides the development of robust and useful
programs

• Set 1 – The Real Objects

» Represent real world objects
– user data, the data in which a user is interested

> a car

> a bank account

> a data file

12-15© Gunnar Gotshalks

On Objects – 2

• Set 2 – The Meta Objects

» Descriptions of other objects (from meta meaning
about)

– programmer is interested in them to build good
models with finite resources such as memory and disk

> sizes

> counts

> number of attributes

• Representation

» Data structures within a program

12-16© Gunnar Gotshalks

On Operations

• Define all the primitives to manipulate the ADT objects

> primitive as no finer grain operations available

> Users build more complex secondary operations as
combinations of primitives

• Partition into 5 groups

> enquiry

> read

> write

> reorganize

> test

12-17© Gunnar Gotshalks

On Operations – 2

• Objective

> Design a complete, orthogonal set of operations

> User has a simple, complete control of objects

> Minimize side effects among operations

• Sometimes provide a larger set than strictly necessary

> Increase the efficiency of combinations of operations

> Simplify user manipulation of objects

• Representation

> Methods – functions & procedures

12-18© Gunnar Gotshalks

Enquiry Operations

• Return status information about the objects – meta data

» Nothing changes within the ADT

> How much data do we have?

> What is the maximum number we can store?

> How many records have been processed?

> Is the structure full?

> Is the structure empty?

12-19© Gunnar Gotshalks

Read Operations

• Retrieve data values from the data structure – user data

» User data does not change

» Meta data could change as a side effect

• Example – 1

» Read the current record

> Meta data does not change

12-20© Gunnar Gotshalks

Read Operations – 2

• Example – 2

» Read the next record

> Case 1: there is a next record

– meta data changes to indicate either
(a) one more record has been read, or
(b) there is one less record to read

> Case 2: there is no next record

– meta data "end of file" is returned, the status of the
file does not change

12-21© Gunnar Gotshalks

Write Operations

• Modify the data representing the real objects – may also
modify meta objects

• Typical operations are
» insert, delete, replace

• Examples
» Replace a record in a file

> user data changes
> meta data remains the same

» Append a record to a file

> user data changes
> meta data changes – size of file, record count

12-22© Gunnar Gotshalks

Reorganization Operations

• Changes the physical relationships among real objects

» sort a list of names

» shuffle a deck of cards

• Make the other operations more efficient

» sorting data

» balancing a tree

• Reorganization operations may change meta objects

» balancing a tree may change the height

12-23© Gunnar Gotshalks

Test Operations

• Not strictly a part of an ADT – rarely required by users

• Useful for implementers and regression testing

• Use operations in the other groups to test and provide
diagnostic information

• Can be used to show

» the meaning of the other operations

» example operator use

