
11-1!© Gunnar Gotshalks!

Stepwise Refinement!
Top Down Design!

11-2!© Gunnar Gotshalks!

On Top Down Design!

•  Useful in creating a function or algorithm when the input
and output data structures correspond!

»  If the input and output data structures do not
correspond then one needs communicating processes
to correctly design an implementation 
 
 
 
!

•  NOT USEFUL for designing programs!

Real systems have no top!

Program ≠ function!

11-3!© Gunnar Gotshalks!

On Mathematics!

I saw a high wall and as I had a premonition of
an enigma, something that might be hidden
behind the wall, I climbed over it with some
difficulty On the other side I landed in a
wilderness and had to cut my way through with a
great effort until – by a circuitous route – I came
to the open gate, the open gate of mathematics.!

M.C. Escher!

11-4!© Gunnar Gotshalks!

Escher – Circle Limit 1 (1958)!

11-5!© Gunnar Gotshalks!

Escher – Plane Filling 1 (1951)!

11-6!© Gunnar Gotshalks!

Escher Waterfall 1961!

11-7!© Gunnar Gotshalks!

Stepwise Refinement !

•  Also known as functional decomposition and top down
design!

•  Given an operation, there are only the following three
choices for refinement!

»  Sequence of sub-operations!

>  OP OP1 ; OP2 ; ... ; OPn!

»  Choice of sub-operations!

>  OP if COND then OP1 else OP2!

»  Loop over a sub-operation!

>  OP OP1 while COND do OP2!

≡

≡

≡

11-8!© Gunnar Gotshalks!

Stepwise Refinement!

•  Is an recursive process of applying one of the previous
three choices (with variations) to sub-operations until
program text can be written!

11-9!© Gunnar Gotshalks!

Stepwise Refinement Procedure!

Problem!
Op!

Unrefined!
Operations!

an OP!

Exists?!

Can code?!

OP OP1 ; OP2 ; ... ; OPn!

OP if COND then OP1 else OP2!

OP OP1 while COND do OP2!

Add to program!

Done!

OP1, OP2, ... , Opn!

COND, OP1, OP2!

COND, OP1, OP2!

No!

Yes!

≡

≡

≡

11-10!© Gunnar Gotshalks!

Sequence Questions!

   OP OP1 ; OP2 ; ... ; Opn!

   Does the sequence of operations OP1 followed by OP2 followed
by ... followed by OPn accomplish the upper level operation OP!

   precondition OP precondition OP1!
   postcondition OP1 precondition OP2!
   postcondition OP2 precondition OP3!
   ...!
   postcondition OPn-1 precondition OPn!
   postcondition Opn postcondition OP!

≡

→

→
→

→
→

11-11!© Gunnar Gotshalks!

Choice Questions!

   OP if COND then OP1 else OP2!

•  Does the operation OP1 accomplish the operation OP when the
condition COND is true!
   COND  

! !precondition OP precondition OP1!
   and !postcondition OP1 postcondition OP!

•  Does the operation OP2 accomplish the operation OP when the
condition COND is false!
   not COND  

! !precondition OP precondition OP2!
   and !postcondition OP2 postcondition OP!→

→
→

→
→

→

≡

11-12!© Gunnar Gotshalks!

Loop Questions – 1 of 4!

   OP –0–  
 OP1  
 –1–  
 while COND { OP2 –2– }  
 –3–!

   Let LI be a loop invariant, which must always be true after
OP1 is executed – except temporarily within OP2!

Ask verification question - i - !≡

11-13!© Gunnar Gotshalks!

Loop Questions – 2 of 4!

   Question 0 – What is the LI?!

»  In general it is an extremely difficult question to answer.
It contains the essential difficulty in programming!

»  Fundamentally it is the following!

    
LI totalWork = workToDo + workDone!≡

11-14!© Gunnar Gotshalks!

Loop Questions – 3 of 4!

   OP 	
–0–  
 ! OP1  
 !–1–  
 ! while COND { OP2 –2– }  
 !–3–  
!

   Question 1 – Is LI true after OP1?!

   precondition(OP) + execution(OP1) LI 
!

   Question 2 – Is LI true after OP2?!

   (LIbefore COND) + execution(OP2) LIafter!

≡

→

→

∧

11-15!© Gunnar Gotshalks!

Loop Questions – 4 of 4!

   OP !–0–  
 ! OP1  
 !–1–  
 ! while COND { OP2 –2– }  
 !–3–  
!

   Question 3a – Does the loop terminate?!

   Does COND eventually become false? 
!

   Question 3b – Is postcondition of OP true at loop end?!

   (LI (not COND)) postcondition OP!

≡

∧ →

11-16!© Gunnar Gotshalks!

Example Loop Design!

•  Consider a program loop which calculates the division of
positive integers.!

»  D is the divisor and D > 0 ! ! ! Q 
Q is the quotient ! ! ! D DV  
R is the remainder ! ! ! !... 
DV is the dividend and DV > 0 ! ! R  
 
!

•  We are to compute Q and R from D and DV such that the
following is true.!

   0 ≤ R < D DV = D * Q + R!∧

11-17!© Gunnar Gotshalks!

Loop Design – 1!

•  Question 0 – Find the loop invariant!

»  After consulting an oracle we have determined that the
following is an appropriate loop invariant!

>  This is the creative part of programming 
!

   LI DV = D * Q + R R ≥ 0!∧≡

11-18!© Gunnar Gotshalks!

Loop Design – 2!

   OP –0– ! ! LI DV = D * Q + R R ≥ 0  
 OP1  
 –1–  
 while COND { OP2 –2– }  
 –3–  
!

•  What we have to do is to determine COND, OP1, and OP2
while checking that the verification questions are satisfied!

»  In practice we iterate between loop invariant and the
program until we have a match that solves the problem!

≡ ≡ ∧

11-19!© Gunnar Gotshalks!

Loop Design – 3!

   ! ! LI DV = D * Q + R R ≥ 0 !

•  Question 1 – Make LI true at the start!

   OP1 Q 0 ; R DV!

LI is true!

DV = D * 0 + DV!

DV > 0 from the precondition R ≥ 0!

∧≡

≡ ← ←

→

11-20!© Gunnar Gotshalks!

Loop Design – 4!

   ! ! LI DV = D * Q + R R ≥ 0  
  

 ! ! while COND { OP2 –2– }!

•  Question 2 – Is LI still true after OP2 is executed? !
   !COND R ≥ D True before OP2 exec!
   !OP2 Q Q + 1 ; R R – D!
   Therefore Q’ = Q + 1 R’ = R – D!

»  After OP2 show LI first part is true!

>  DV = D * Q’ + R’ LI first part  
 = D * (Q + 1) + (R – D) Substitute equality  
 = D * Q + D + R – D Rearrange 
 = D * Q + R True before OP2, still true!

»  See effect of moving data from workToDo (D & DV) to
workDone (Q & R) while maintaining the invariant.!

≡ ∧

≡
≡ ←←

∧

11-21!© Gunnar Gotshalks!

Loop Design – 5!

   ! ! LI DV = D * Q + R R ≥ 0  
  
 ! ! while COND { OP2 –2– }!

•  Question 2 – Is LI still true after OP2 is executed? !
   !COND R ≥ D True before OP2 exec!
   !OP2 Q Q + 1 ; R R – D!
   Therefore Q’ = Q + 1 R’ = R – D  
!

»  After OP2 show second part of LI is still true!

>  R’ ≥ 0 ! LI second part  
 (R – D) ≥ 0 Substitute equality  
 R ≥ D Rearrangement is true from COND

! ! Therefore R’ ≥ 0 is true!

≡ ∧

≡
≡ ← ←

∧

→
→

11-22!© Gunnar Gotshalks!

Loop Design – 6!

   ! ! LI DV = D * Q + R R ≥ 0  
  

! ! while R ≥ D {  
! ! Q Q + 1  

 R R – D  
 ! ! } !

•  Question 3a – Does COND eventually become false?!

»  Every time around the loop OP2 reduces the size  
of R by D > 0.!

»  In a finite number of iterations R must become  
less than D.!

≡ ∧

←
←

11-23!© Gunnar Gotshalks!

Loop Design – 7!

   ! ! LI DV = D * Q + R R ≥ 0  
 

! ! COND = R ≥ D!

•  Question 3b  
!Does ~ COND and LI postcondition for OP ?!

»  ~ COND R < D!

»  LI DV = D * Q + R R ≥ 0!

»  Together DV = D * Q + R 0 ≤ R < D !

»  Equals !Problem specification 
! !0 ≤ R < D DV = D*Q + R!

≡ ∧

→

→

≡ ∧
∧→

∧

11-24!© Gunnar Gotshalks!

Loop Invariant – Example 1a!

•  Copy a sequence of characters from input to output!
   read aChar from input!
   while aChar ≠ EOF!
   write aChar to output!
   read aChar from input!
   end while  
!

•  The loop invariant is the following!

In[1 .. N] = Out[1 .. j – 1] + aChar + In [j + 1 .. N]!

totalWork = workDone + workToDo!

11-25!© Gunnar Gotshalks!

Loop Invariant – Example 1b!

•  The loop invariant is the following!

In[1 .. N] = Out[1 .. j – 1] + aChar + In [j + 1 .. N]!

!

•  The loop invariant can be simplified by removing  
Input[i + 1 .. N] from each side of the relationship!

In[1 .. j] = Out[1 .. j – 1] + aChar  
!

•  It is the simplified form that one sees most often!

11-26!© Gunnar Gotshalks!

Loop Invariant – Example 2a!

•  Compute the sum of the integers 1 to N!
   sum 0 ; p 0!
   loop exit when p = N!
   p += 1 ; sum += p!
   end loop  
!

•  The loop invariant is the following  
!

   = sum +!

    
totalWork = workDone + workToDo!

 !
 ! !

←←

j
1

n

∑ j
p+1

n

∑

11-27!© Gunnar Gotshalks!

Loop Invariant – Example 2b!

•  The loop invariant is the following  
!

   = sum +!

•  Simplify by removing the following expression from each
side of the relationship  
 
 
To get 
 
 = sum !

 !

 !

j
1

n

∑ j
p+1

n

∑

j
p+1

n

∑

j
1

p

∑

11-28!© Gunnar Gotshalks!

Loop Invariant – Example 3a!

•  Compare string A [1 .. p] with string B [1 .. p]. 
Last character in string must be EOS!

   J 1 
loop exit when A[j] ≠ B[j] or A[j] = EOS 
 j += 1  
end loop!

    
A[1 .. p] ? B[1 .. p] ! ! totalWork!

   = A[1 .. j – 1] = B[1 .. j – 1] workDone!

   + A[j .. n] ? B[j .. n] ! workToDo!

   j ≤ p A[p] = B[p] = EOS!

   ! ! ! ! Support conditions!

←

∧ ∧

11-29!© Gunnar Gotshalks!

Loop Invariant – Example 3b!

•  The loop invariant is the following.!

   A [1 .. p] ? B [1 .. p]!

   = A [1 .. j – 1] = B [1 .. j – 1] !

   + A[j .. p] ? B[j .. p] !

   j ≤ p A[p] = B[p] = EOS 
!

•  The simplified loop invariant!

   A[1 .. j – 1] = B[1 .. j – 1]!

   j ≤ p A[p] = B[p] = EOS!

∧ ∧

∧ ∧

11-30!© Gunnar Gotshalks!

Context for loop inductive step!

