Stepwise Refinement Top Down Design

On Top Down Design

- Useful in creating a function or algorithm when the input and output data structures correspond
 - » If the input and output data structures do not correspond then one needs communicating processes to correctly design an implementation

Program ≠ function

• **NOT USEFUL** for designing programs

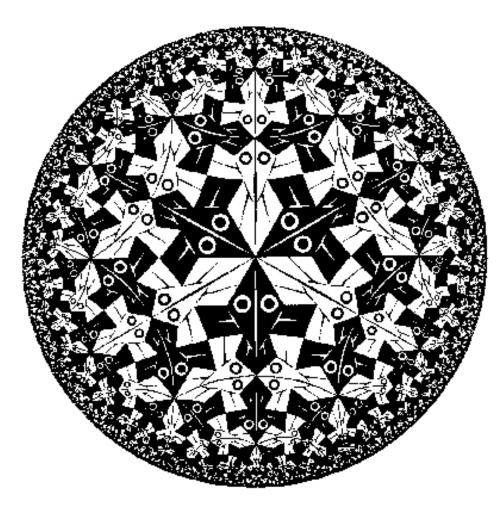
Real systems have no top

On Mathematics

I saw a high wall and as I had a premonition of an enigma, something that might be hidden behind the wall, I climbed over it with some difficulty . . . On the other side I landed in a wilderness and had to cut my way through with a great effort until – by a circuitous route – I came to the open gate, the open gate of mathematics.

M.C. Escher

Escher – Circle Limit 1 (1958)



Escher – Plane Filling 1 (1951)

Escher Waterfall 1961

Stepwise Refinement

- Also known as functional decomposition and top down design
- Given an operation, there are only the following three choices for refinement
 - » Sequence of sub-operations

> OP ≡ OP1 ; OP2 ; ... ; OPn

» Choice of sub-operations

 $> OP \equiv if COND then OP1 else OP2$

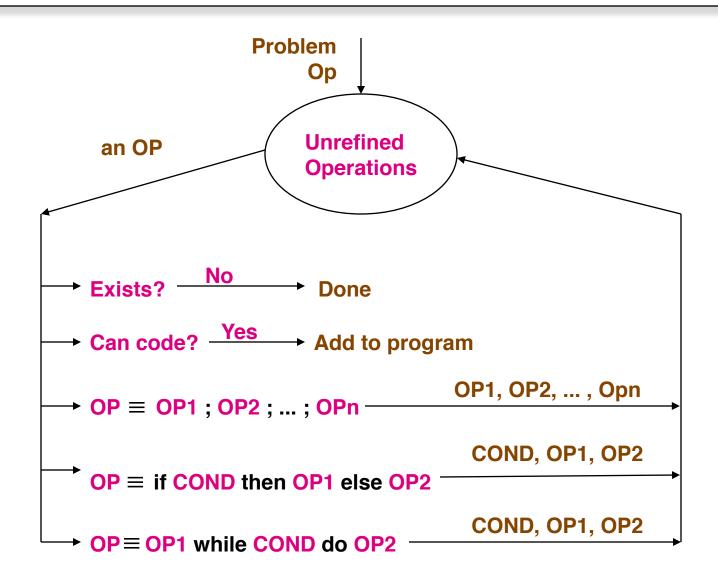
» Loop over a sub-operation

 $> OP \equiv OP1$ while COND do OP2

Stepwise Refinement

 Is an recursive process of applying one of the previous three choices (with variations) to sub-operations until program text can be written

Stepwise Refinement Procedure



Sequence Questions

OP = **OP1** ; **OP2** ; ... ; **Opn**

Does the sequence of operations **OP1** followed by **OP2** followed by ... followed by **OPn** accomplish the upper level operation **OP**

precondition OP \rightarrow precondition OP1 postcondition OP1 \rightarrow precondition OP2 postcondition OP2 \rightarrow precondition OP3 ...

postcondition OPn-1 \rightarrow precondition OPn postcondition Opn \rightarrow postcondition OP

Choice Questions

OP = if COND then OP1 else OP2

Does the operation OP1 accomplish the operation OP when the condition COND is true

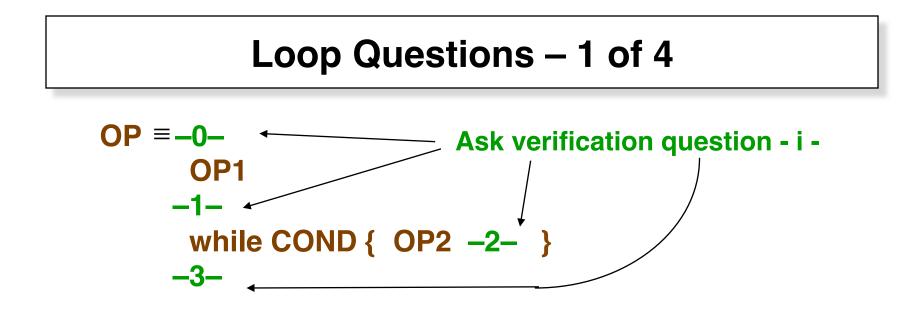
 $\mathsf{COND} \rightarrow$

precondition OP \rightarrow precondition OP1

and postcondition $OP1 \rightarrow postcondition OP$

Does the operation OP2 accomplish the operation OP when the condition COND is false

not COND \rightarrow precondition OP \rightarrow precondition OP2 and postcondition OP2 \rightarrow postcondition OP



Let LI be a loop invariant, which must always be true after **OP1** is executed – except temporarily within **OP2**

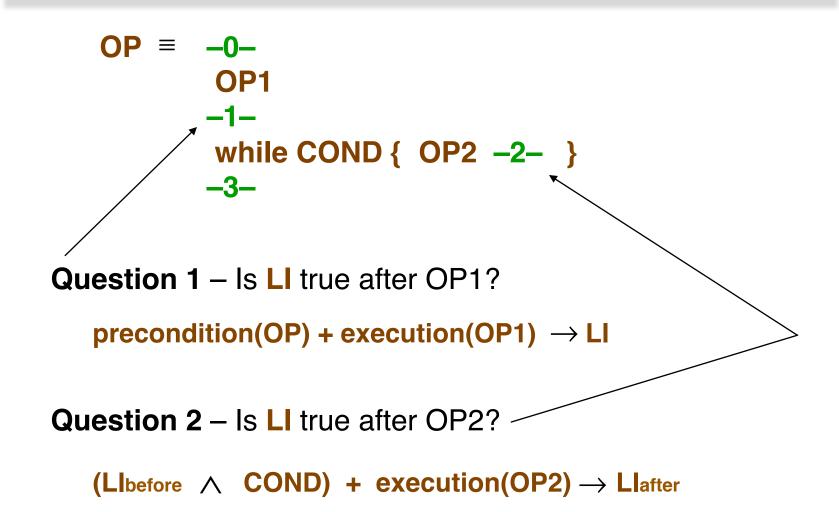
Loop Questions – 2 of 4

Question 0 – What is the LI?

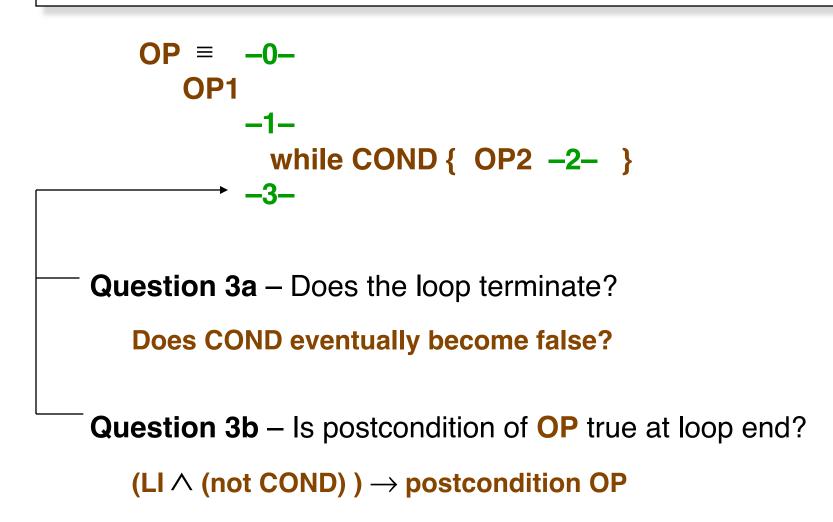
- In general it is an extremely difficult question to answer.
 It contains the essential difficulty in programming
- » Fundamentally it is the following

LI = totalWork = workToDo + workDone

Loop Questions – 3 of 4

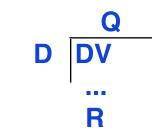


Loop Questions – 4 of 4



Example Loop Design

- Consider a program loop which calculates the division of positive integers.
 - » D is the divisor and D > 0
 Q is the quotient
 R is the remainder
 DV is the dividend and DV > 0



• We are to compute **Q** and **R** from **D** and **DV** such that the following is true.

 $0 \le \mathbf{R} < \mathbf{D} \land \mathbf{DV} = \mathbf{D}^* \mathbf{Q} + \mathbf{R}$

- Question 0 Find the loop invariant
 - » After consulting an oracle we have determined that the following is an appropriate loop invariant

> This is the creative part of programming

 $LI \equiv DV = D * Q + R \land R \ge 0$

OP ≡ -0-OP1 -1while COND { OP2 -2- } -3-

- What we have to do is to determine **COND**, **OP1**, and **OP2** while checking that the verification questions are satisfied
 - » In practice we iterate between loop invariant and the program until we have a match that solves the problem

 $LI \equiv DV = D * Q + R \land R \ge 0$

• Question 1 – Make LI true at the start

 $OP1 \equiv Q \leftarrow 0 ; R \leftarrow DV$

LI is true

DV = D * 0 + DV

DV > 0 from the precondition $\rightarrow R \ge 0$

 $LI \equiv DV = D * Q + R \land R \ge 0$ while COND { OP2 -2- }

• Question 2 – Is LI still true after **OP2** is executed?

 $COND \equiv R \ge D \qquad True before OP2 exec$

 $OP2 = Q \leftarrow Q + 1 ; R \leftarrow R - D$

Therefore $Q' = Q + 1 \land R' = R - D$

» After OP2 show LI first part is true

> DV = D * Q' + R' LI first part = D * (Q + 1) + (R - D) Substitute equality = D * Q + D + R - D Rearrange = D * Q + R True before OP2, still true

» See effect of moving data from workToDo (D & DV) to workDone (Q & R) while maintaining the invariant.

```
LI \equiv DV = D * Q + R \land R \ge 0
```

```
while COND { OP2 -2- }
```

• Question 2 – Is LI still true after **OP2** is executed?

COND $\equiv R \geq D$ True before OP2 execOP2 $\equiv Q \leftarrow Q + 1$; $R \leftarrow R - D$ Therefore Q' = Q + 1 \land R' = R - D

» After **OP2** show second part of **LI** is still true

> R' ≥0	LI second part
\rightarrow (R – D) \geq 0	Substitute equality
$\rightarrow R \ge D$	Rearrangement is true from COND
	Therefore $R' \ge 0$ is true

```
LI \equiv DV = D * Q + R \land R \ge 0
while R \ge D \{
Q \leftarrow Q + 1
R \leftarrow R - D
}
```

- Question 3a Does **COND** eventually become false?
 - » Every time around the loop OP2 reduces the size of R by D > 0.
 - » In a finite number of iterations R must become less than D.

```
LI \equiv DV = D * Q + R \land R \ge 0
```

$\mathsf{COND} = \mathsf{R} \ge \mathsf{D}$

- Question 3b
 Does ~ COND and LI → postcondition for OP ?

 - » LI \equiv DV = D * Q + R \land R \geq 0
 - » Together \rightarrow DV = D * Q + R \land 0 \leq R < D
 - » Equals Problem specification $0 ≤ R < D \land DV = D^*Q + R$

Loop Invariant – Example 1a

- Copy a sequence of characters from input to output read aChar from input while aChar ≠ EOF write aChar to output read aChar from input end while
- The loop invariant is the following

ln[1..N] = Out[1..j-1] + aChar + ln[j+1..N]

totalWork = workDone + workToDo

Loop Invariant – Example 1b

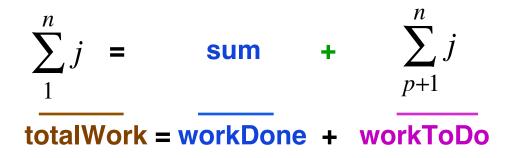
• The loop invariant is the following

```
ln[1..N] = Out[1..j-1] + aChar + ln[j+1..N]
```

- The loop invariant can be simplified by removing Input[i + 1 .. N] from each side of the relationship
 In[1..j] = Out[1..j-1] + aChar
- It is the simplified form that one sees most often

Loop Invariant – Example 2a

- Compute the sum of the integers 1 to N sum ← 0 ; p ← 0 loop exit when p = N p += 1 ; sum += p end loop
- The loop invariant is the following



Loop Invariant – Example 2b

• The loop invariant is the following

$$\sum_{1}^{n} j = \text{sum} + \sum_{p+1}^{n} j$$

• Simplify by removing the following expression from each side of the relationship

To get
$$\sum_{p+1}^{n} j$$
$$\sum_{1}^{p} j = sum$$

Loop Invariant – Example 3a

• Compare string A [1 .. p] with string B [1 .. p]. Last character in string must be EOS

> J ← 1 loop exit when A[j] ≠ B[j] or A[j] = EOS j += 1 end loop

A[1..p]?B[1..p] totalWork= A[1..j-1]=B[1..j-1] workDone + A[j..n]?B[j..n] workToDo $\land j \le p \land A[p] = B[p] = EOS$ Support conditions

Loop Invariant – Example 3b

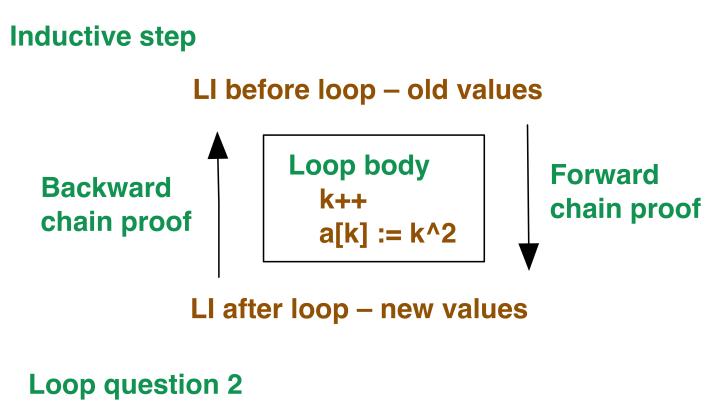
• The loop invariant is the following.

A [1..p]? B [1..p]= A [1..j-1] = B [1..j-1] + A[j..p]? B[j..p] $\land j \le p \land A[p] = B[p] = EOS$

• The simplified loop invariant

A[1..j-1] = B[1..j-1] $\land j \le p \land A[p] = B[p] = EOS$

Context for loop inductive step



(LIbefore \land COND) + execution(OP2) \Rightarrow Llafter