
05-1© Gunnar Gotshalks

Objects

Run time direct instances of classes

05-2© Gunnar Gotshalks

Fields

• The attributes within a class are a template for a collection
of fields in an object

 class PERSON
 feature

 name : STRING
 sex : GENDER
 age : INTEGER

 end

a_Person
name

sex

age

05-3© Gunnar Gotshalks

Objects

• Variables with a class for a type

• Must have a name declared and the name must be
attached to the object

• Using an object requires two steps: declaration and
creation

 p : PERSON -- declare the name p
 create p -- create and attach object to p

 w : PERSON -- declare the name w
 create w.make("Me") -- create via a function

05-4© Gunnar Gotshalks

Creation Operator

• create is akin to new in C++ and Java

• The 4 steps

» Create an instance of the type

Allocate enough memory for the instance

» Initialize each field to default values

» Attach the reference to the variable

» Execute the procedure (if any) to complete initialization

05-5© Gunnar Gotshalks

Reference types

• p is used to refer to an instance of type PERSON

 p : PERSON

• Create and attach object to p – p is attached

 create p

• Think of p as a pointer

For type safety, unlike C/C++, the pointer cannot be
de-referenced

p

PERSON

p
void

05-6© Gunnar Gotshalks

Models & Objects

Abstract
Data Type

Class

Model
Object

Software
Object

Model / Template Instance

Abstract

Concrete

instance ofimplements

05-7© Gunnar Gotshalks

Copying

a := y – copies only the reference

a := y.twin

 – shallow copy – one level copy
– new storage space is created
– y must exist

a := y.deep_twin

– deep copy – all levels
 – new storage space is created

– y must exist

a . copy(y)
– shallow copy

 – a exists, replace fields of a with those in y
– NO new storage

05-8© Gunnar Gotshalks

Copying – 2

Almavia

SusannaFigaro

A
1 A is created

05-9© Gunnar Gotshalks

Copying – 3

Almavia

SusannaFigaro

A
B

2 B := A

3 C := A.twin

C

Almavia

05-10© Gunnar Gotshalks

Copying – 4

Almavia

SusannaFigaro

4 D := A.deep_twin -- all new memory locations

D

05-11© Gunnar Gotshalks

Equality

= – compares references

equal (a , b) – shallow comparison
– compares one level
– works if a is void

a.is_equal (b) – compares one level
– shallow comparison

deep_equal (a , b) – compares all levels
 – deep comparison
 – works if a is void

05-12© Gunnar Gotshalks

Persistence

• Direct dependents

» The direct dependents of an object are the objects
attached to its references

• Dependents

» The dependents of an object are:

> The object itself

> Its dependents

> And – recursively – the dependents of its direct
dependents, etc.

05-13© Gunnar Gotshalks

Persistence Closure Principle

Whenever a storage mechanism stores an
object, it must store with it the dependents
of that object.

Whenever a retrieval mechanism retrieves
a previously stored object, it must also
retrieve any dependent of that object not
already retrieved.

05-14© Gunnar Gotshalks

Expanded Types

• In general, declaring a type means the variable is a
reference to an instance of the type

• Base type objects – INTEGER, REAL, DOUBLE, CHAR –
are not referenced

» They are statically allocated (expanded)

» They are first class objects – no repackaging as in Java

• Expanded means the reference is replaced with the fields
of the referenced object

» All usage is the same as for normal OO usage

05-15© Gunnar Gotshalks

Expanded Types – example

class ABC
 p_1 : PERSON_EXP
 p_2 : PERSON
end

class PERSON
 name : STRING
 sex : GENDER
 age : INTEGER
end

expanded class PERSON_EXP
 name : STRING
 sex : GENDER
 age : INTEGER
end

an_abc : ABC
…
print (an_abc . p_1 . name)
print (an_abc . p_2 . name)

an_abc
p_1

p_2

05-16© Gunnar Gotshalks

Composite objects

• An object is called a composite object if one or more of its
fields are objects – called subobjects

• In the previous slide, the object an_abc is a composite
object

» p_1 is an object, not a reference

» p_2 is a reference, not an object

• A subobject is a part_of an object

05-17© Gunnar Gotshalks

Aliasing

• Occurs when two variables point to the same memory
location

• Can lead to surprises but

» Reference assignments needed to benefit from OO

> Often need two pointers to point to the same object

» Encapsulation makes it possible to avoid dangers of
reference manipulations

a_name

p1.name p2.name

05-18© Gunnar Gotshalks

Aliasing Potential Problem

• Consider the following version of class Person
 class PERSON
 feature

 name : STRING
 end

• We say that Person has a NAME

• NAME is a reference

» Makes it possible for two or more instances of PERSON
to share the same name

p1.name p2.name

a_name

05-19© Gunnar Gotshalks

Aliasing Potential Problem – 2

• Sharing references can lead to surprises

» p1.name := “John” ; p2.name := p1.name

» print (p2.name) --> John

» p2.name.put(‘x’ , 1)

» print (p1.name) --> xohn -- Probably a surprise

• Should be careful to have names pointing to different
memory locations

» condition: p1.name ≠ p2.name

» But could be difficult to enforce across objects

05-20© Gunnar Gotshalks

Name Solution

• Could use expanded classes

» But unless planned for cannot use existing classes

> E.g. STRING in Eiffel

• Can use twin or deep_twin, as appropriate, and contracts
class PERSON

make (the_name: STRING)
 require good_name: the_name.count > 3
 do name := the_name.twin
 ensure
 name_set: name /= the_name and name . is_equal (the_name)
 end

name: STRING
end

