
04-1!© Gunnar Gotshalks!

Classes!
The Static Structure!

!

Abstract data types equipped with!
a possibly partial implementation!



04-2!© Gunnar Gotshalks!

Style Rules!

•  Pick a style and stick to it!

•  Recommend that you use Eiffel style or close 
approximation!

»  Look at example program text the case and pattern 
studies  
!



04-3!© Gunnar Gotshalks!

Style Rules – 2!

•  My style is to indent less!

»  Rationale: screen real-estate is expensive, so make the 
best use of it you can!

>  Only need two spaces not four!

>  No need to indent text between initial class 
statement and final end statement!
–  Does not give any additional structural information	




04-4!© Gunnar Gotshalks!

Definitions!

•  A class is a combination of a type and a module!

•  A module because it is has a data part and an operation 
part!

•  A type because you can declare (and therefore create) 
instances of a class!



04-5!© Gunnar Gotshalks!

Definitions – 2!

•  An object (a variable) is an instance of a class!
>  Logically, each object has its own copy of the local 

attributes and its own copy of the operations in the 
class!

•  A client class C of a suppler class S uses S by declaring 
a variable of type S.!

»  S is a supplier of C!

»  C is a client of S!



04-6!© Gunnar Gotshalks!

Interface – Stack example!

   class STACK [ G ]!

   feature ! !-- Enquiry and change!

   full, empty : BOOLEAN         -- functions or attributes ?!

   push ( x : G ) ! !         -- a procedure!

   pop ! ! !         -- a procedure!

   top : G ! !         -- function or attribute ?!

   end 
!

•  No Specification of how a stack is implemented!

•  No implementation of features!



04-7!© Gunnar Gotshalks!

Uniform Access Principle!

All services offered by a module should be available 
through a uniform notation, which does not betray 
whether they are implemented through storage or 
through computation. 



04-8!© Gunnar Gotshalks!

Uniform Access Principle – 2!

•  Client should neither know, nor care, if a returned value of 
a feature without a parameter is …!
»  Stored as an attribute!

»  Computed as function!
!

   class STACK [ G ]!

   feature ! !-- Enquiry and change!

   full, empty : BOOLEAN         -- functions or attributes ?!

   push ( x : G ) ! !         -- a procedure!

   pop ! ! !         -- a procedure!

   top : G ! !         -- function or attribute ?!

   end!



04-9!© Gunnar Gotshalks!

Person Class – 1!

   note ! !-- For class level documentation!
    !description: "A simple person"       

!author: "Gunnar Gotshalks"  
!date: 2012 Jan 4"!

   class PERSON!
   create make !-- list construction features!

   feature!
   name : STRING!
   sex : GENDER!
   age : INTEGER!

PERSON is a client of!
the suppliers!
  STRING!
  GENDER!
  INTEGER!



04-10!© Gunnar Gotshalks!

Person Class – 2!

   make( n : STRING ; s : GENDER ; a : INTEGER )!
     -- Create a complete non default person!
   do!
       -- Empty body for this example creation procedure!
   end!

   set_name ( s : STRING )!
    !-- Need to explicitly set attribute values!
   do!
   name := s!
   end 
!



04-11!© Gunnar Gotshalks!

Person Class – 3!

    
!

   older ( a : INTEGER ) : BOOLEAN!
     -- Are you older than me?!
   do!
       if a > age then 

        io_put_string ( "You are older than me. %N")!
           Result := true  

    else 
        io_put_string ( "I am older than you. %N")!

           Result := false  
    end!

   end!
   end!

PERSON is a client of!
the supplier INTEGER!



04-12!© Gunnar Gotshalks!

Client–Supplier BON diagram!

•  BON stands for!

!B-usiness O-bject N-otation!

PERSON!
STRING!

INTEGER!

BOOLEAN!GENDER!

uses!



04-13!© Gunnar Gotshalks!

Inheritance!

 !
   class PERSON inherit!
       HOMOSAPIEN!
   feature!
   ....!
   end! PERSON!

HOMOSAPIEN!

Inherits from!

BON diagram!Eiffel text!



04-14!© Gunnar Gotshalks!

Feature Call!

   object . function ( arguments )!

•  Evaluate the arguments to the function!

•  Then apply the function to the object!

•  In non OO languages this is equivalent to!

   function ( object , arguments )!

»  where  object = Current = self = this!



04-15!© Gunnar Gotshalks!

Infix Feature Call!

•  Can define operators that have one argument to be infix to 
use standard notation!

»  Thus!
   infix '<' ( other : TROLL) : BOOLEAN  

         -- Compare me to another Troll!
       do ... End!

»  Or used as!
   troll_1 <  troll_2!



04-16!© Gunnar Gotshalks!

Prefix Feature Call!

•  Can define operators that have no arguments to be prefix 
to use standard notation!

»  Thus!
   prefix '–' : INTEGER  

       -- Unary minus  
    do ... End!

»  Or used as!
   – an_integer!



04-17!© Gunnar Gotshalks!

Current Instance!

•  Instance calling the feature is locally named Current!
!p1 . distance_to ( p2 ) !-- example call 
!
!

   distance_to( p : POINT ) : REAL!
     -- Distance between Current point and p!

   do!
       if ( p /= Current ) then!
          Result := sqrt( ( x - p.x )^2 + ( y - p.y )^2 ) 

    end!
   End!

»  could write as follows but that is considered poor style!
   Result := sqrt( ( current.x - p.x )^2 !
                         + ( current.y - p.y )^2 )!

bound to p1!

bound to p2!



04-18!© Gunnar Gotshalks!

Current Instance – 2!

•  Partly  like!
»  self – in Smalltalk and Objective-C  

this – in C++ and Java!

•  But uniform access principle has attributes as 
parameter-less functions!
»  Thus the following is illegal as Current.x could be a 

function call!
>  You cannot assign a value to a function 
!

   x : INTEGER!
    t ( y : INTEGER )!
   do!
     Current.x := y!
   end!



04-19!© Gunnar Gotshalks!

Current Instance – 3!

•  Current can be used in the following contexts!

»  Passing instance as a parameter!

   a.f ( Current ) 
!

»  Comparing with another reference!

   x = Current 
!

»  Use as an anchor in anchored declarations!

   object : like Current!
–  Will see this again in inheritance	




04-20!© Gunnar Gotshalks!

Unique names features & parameters!

•  The following is illegal!

a_var : INTEGER!
…!
a_procedure ( a_var : INTEGER )!
do!
   io.put_string ( a_var )!
end 
!

!! Single Name Rule!
Two different items within a class may 
not have the same final name!
a_var cannot be both a feature and a 
parameter of a feature!



04-21!© Gunnar Gotshalks!

Selective Exports!

•  Need to restrict access by clients!
•  In Java have public, protected and private!

•  In Eiffel can be more selective!
   class S feature!
       -- all features exported -- public  
!

   feature { A , B }!
       -- export only to A and B -- protected 
!

   feature { NONE }!
       -- export to no one -- private, secret 

    -- NOT EVEN TO S – include self if needed !  
!

   end!



04-22!© Gunnar Gotshalks!

System Execution!

•  Create a certain object!

»  called the root object for the execution 
!

•  Apply a certain procedure to that object!

»  called the creation procedure  
!

•  Not the same as a system top!

»  NOT the top of the architecture!

»  Just the start of execution!

This is the BIG BANG!!



04-23!© Gunnar Gotshalks!

Class Definition!

Class! A class is an abstract data type equipped!
with a possibly partial implementation.!

Deferred / Effective Class!
A class which is fully implemented is said to be effective.!
A class which is implemented partially, or not at all, is!
said to be deferred.  Any class is either deferred or effective.!

In Java a deferred class is called an abstract class  
In Java an interface is a class with all methods 
deferred and no objects!



04-24!© Gunnar Gotshalks!

Role of Deferred Classes!

•  Design and analysis 
!

•  Pure description!

»  No implementation details required 
!

•  Concentrate on architectural properties 
!

•  Provide for variations in implementation while preserving a 
particular type  
!

•  Provide for evolutionary development and its history!



04-25!© Gunnar Gotshalks!

OO Software Construction (OOSC)!

The building of software systems as structured collections!
of possibly partial abstract data type implementations!

Object oriented software construction!
technical definition!



04-26!© Gunnar Gotshalks!

OOSC and ADTs!

•  Basis is ADT!

•  Need ADT implementations!

•  Can have partial implementations!



04-27!© Gunnar Gotshalks!

OOSC and ADTs – 2!

•  System is a collection of classes!

»  No one class particularly in charge!

>  No top or main program!

>  Although execution requires a starting location!
–  Could change	


•  In principle and practice���
	




04-28!© Gunnar Gotshalks!

OOSC and ADTs – 2!

•  The collection is structured by two inter-class relations!
»  Client – supplier!

>  Client has_a supplier!

»  Inheritance!
>  Class is_a …!



04-29!© Gunnar Gotshalks!

ADT to Class!

•  Basic steps in getting a class from an abstract data type!
»  E1 – Create an ADT!
»  E2 – Chose a representation !
»  E3 – Create a mapping of the operations in E1 to the 

representation in E2!

Public	

E1	


Secret	

E2 & E3	




04-30!© Gunnar Gotshalks!

Class–ADT Relationship!

»  a – maps a concrete object into an abstract object!

»  af – function that maps abstract object 1 into abstract 
object 2!

»  cf –  function that maps concrete object 1 into concrete 
object 2!

Abstract_object_1! Abstract_object_2!

Concrete_object_1! Concrete_object_2!

a! a!

af!

cf!



04-31!© Gunnar Gotshalks!

Class–ADT Consistency Property!

cf ; a!

Abstract_object_1! Abstract_object_2!

Concrete_object_1! Concrete_object_2!

a! a!

af!

cf!

a ; af! !


