
02-1!© Gunnar Gotshalks!

Design!
Context and Principles!

02-2!© Gunnar Gotshalks!

Waterfall Model – Software Life Cycle!

Needs analysis – requirements!

Architectural design – framework!
Detailed design – data, algorithms!

Specification – input/output!

Implementation – program text!
Maintenance – corrections, evolution!

Apply recursively at all levels – from system level to subprogram.!
Spiral model and evolutionary development are variations!

02-3!© Gunnar Gotshalks!

Waterfall Model – Software Life Cycle – 2!

•  What is produced at each level?!

Needs analysis – requirements!

Architectural design – framework!
Detailed design – data, algorithms!

Specification – input/output!

Implementation – program text!
Maintenance – corrections, evolution!

02-4!© Gunnar Gotshalks!

Waterfall Model – Software Life Cycle – 3!

•  At all stages the artifacts produced are human
readable documents!

Needs analysis – requirements!

Architectural design – framework!
Detailed design – data, algorithms!

Specification – input/output!

Implementation – program text!
Maintenance – corrections, evolution!

02-5!© Gunnar Gotshalks!

Waterfall Model – Software Life Cycle – 4!

•  At all stages the artifacts produced are documents!
»  They may be formal 

 – use mathematics and programming languages!

Needs analysis – requirements!

Architectural design – framework!
Detailed design – data, algorithms!

Specification – input/output!

Implementation – program text!
Maintenance – corrections, evolution!

02-6!© Gunnar Gotshalks!

Waterfall Model – Software Life Cycle – 5!

•  At all stages the artifacts produced are documents!
»  They may be formal 

 – use mathematics and programming languages!

»  They may be informal 
 – use natural language!

Needs analysis – requirements!

Architectural design – framework!
Detailed design – data, algorithms!

Specification – input/output!

Implementation – program text!
Maintenance – corrections, evolution!

02-7!© Gunnar Gotshalks!

Waterfall Model – Software Life Cycle – 6!

•  At all stages the artifacts produced are documents!
»  They may be formal 

 – use mathematics and programming languages!

»  They may be informal 
 – use natural language!

•  At all times strive for correctness and precision!

Needs analysis – requirements!

Architectural design – framework!
Detailed design – data, algorithms!

Specification – input/output!

Implementation – program text!
Maintenance – corrections, evolution!

02-8!© Gunnar Gotshalks!

What is Programming?!

02-9!© Gunnar Gotshalks!

What is Programming? – 2!

•  Specifying what to to do and when to do it!

02-10!© Gunnar Gotshalks!

What is Programming? – 3!

•  Specifying what to to do and when to do it!

•  The what consists of the following!

»  At the assembler level the hardwired instructions!

>  add, load, store, move, etc.!

02-11!© Gunnar Gotshalks!

What is Programming? – 4!

•  Specifying what to to do and when to do it!

•  The what consists of the following!

»  At the assembler level the hardwired instructions!

>  Add, load, store, move, etc.!

»  At the Eiffel, C, Java level!

>  Assignment, arithmetic, read/write!

>  Routines from a Subprogram library, API
(Application Program Interface)!

02-12!© Gunnar Gotshalks!

What is Programming? – 5!

•  The when consists of specifying in what order to do the
"what" operations!

02-13!© Gunnar Gotshalks!

What is Programming? – 6!

•  The when consists of specifying in what order to do the
"what" operations!

»  Control structures!

02-14!© Gunnar Gotshalks!

What is Programming? – 7!

•  The when consists of specifying in what order to do the
"what" operations!

»  Control structures!

>  What are the fundamental control structures?!

02-15!© Gunnar Gotshalks!

What is Programming? – 8!

•  The when consists of specifying in what order to do the
"what" operations!

»  Control structures – these are the only ones!

>  Sequence!

>  Choice!

>  Loop 
!

02-16!© Gunnar Gotshalks!

What is Programming? – 9!

•  The when consists of specifying in what order to do the
"what" operations!

»  Control structures – these are the only ones!

>  Sequence!

>  Choice!

>  Loop 
!

•  What and when are intertwined!

»  Changing one generally requires changing the other!

02-17!© Gunnar Gotshalks!

What is Design?!

02-18!© Gunnar Gotshalks!

What is Design? – 2!

•  The creation of a plan.!

02-19!© Gunnar Gotshalks!

What is Design? – 3!

•  The creation of a plan.!

»  Consider design as imposing constraints on the "when"
and "what" of programming.!

02-20!© Gunnar Gotshalks!

What is Design? – 4!

•  The creation of a plan.!

»  Consider design as imposing constraints on the "when"
and "what" of programming.!

»  From this perspective, the entire life cycle is comprised
of design at various levels . !

02-21!© Gunnar Gotshalks!

What is Design? – 5!

•  The creation of a plan.!

»  Consider design as imposing constraints on the "when"
and "what" of programming.!

»  From this perspective, the entire life cycle is comprised
of design at various levels . !

>  Design occurs at all the levels of the Waterfall Model
from requirements to implementation!

02-22!© Gunnar Gotshalks!

What is Design? – 6!

•  Design comes from the root to designate, to name!

02-23!© Gunnar Gotshalks!

What is Design? – 7!

•  Design comes from the root to designate, to name!

»  In design one names objects and their relationships!

02-24!© Gunnar Gotshalks!

What is Design? – 8!

•  Design comes from the root to designate, to name!

»  In design one names objects and their relationships!

»  The difficult part is finding the "right" objects and the
"right" relationships!

02-25!© Gunnar Gotshalks!

What is Design? – 9!

•  Design comes from the root to designate, to name!

»  In design one names objects and their relationships!

»  The difficult part is finding the "right" objects and the
"right" relationships!

»  There must be a correspondence between specification
and implementation!

02-26!© Gunnar Gotshalks!

What is Design? – 10!

•  Design comes from the root to designate, to name!

»  In design one names objects and their relationships!

»  The difficult part is finding the "right" objects and the
"right" relationships!

»  There must be a correspondence between specification
and implementation!

>  The objects and relationships in the specification
must correspond to the objects and relationships in
the implementation!

02-27!© Gunnar Gotshalks!

What is Design? – 11!

•  Design comes from the root to designate, to name!

»  In design one names objects and their relationships!

»  The difficult part is finding the "right" objects and the
"right" relationships!

»  There must be a correspondence between specification
and implementation!

>  The objects and relationships in the specification
must correspond to the objects and relationships in
the implementation!

>  The Direct Mapping Rule (slides on Modularity)!

02-28!© Gunnar Gotshalks!

What is Design? – 12!

•  Design comes from the root to designate, to name!

»  In design one names objects and their relationships!

»  The difficult part is finding the "right" objects and the
"right" relationships!

»  There must be a correspondence between specification
and implementation!

>  The objects and relationships in the specification
must correspond to the objects and relationships in
the implementation!

>  The Direct Mapping Rule (slides on Modularity)!
>  Purpose of documentation is to show that

correspondence!

02-29!© Gunnar Gotshalks!

Design within the Lifecycle!

•  Consider the constraints imposed in the software lifecycle!

02-30!© Gunnar Gotshalks!

Design within the Lifecycle – 2!

•  Consider the constraints imposed in the software lifecycle!

»  Putting together a requirements document constrains
what can be done from all possible programs to the set
of programs corresponding to the requirements!

02-31!© Gunnar Gotshalks!

Design within the Lifecycle – 3!

•  Consider the constraints imposed in the software lifecycle!

»  Putting together a requirements document constrains
what can be done from all possible programs to the set
of programs corresponding to the requirements!

»  The specification formalizes the requirements and in the
process adds more constraints.!

02-32!© Gunnar Gotshalks!

Design within the Lifecycle – 4!

•  Consider the constraints imposed in the software lifecycle!

»  Putting together a requirements document constrains
what can be done from all possible programs to the set
of programs corresponding to the requirements!

»  The specification formalizes the requirements and in the
process adds more constraints.!

>  The set of possible programs is smaller!

02-33!© Gunnar Gotshalks!

Design within the Lifecycle – 5!

•  Consider the constraints imposed in the software lifecycle!

»  Putting together a requirements document constrains
what can be done from all possible programs to the set
of programs corresponding to the requirements!

»  The specification formalizes the requirements and in the
process adds more constraints.!

»  Architectural design adds constraints, and so on.!

02-34!© Gunnar Gotshalks!

Design within the Lifecycle – 6!

•  Consider the constraints imposed in the software lifecycle!

»  Putting together a requirements document constrains
what can be done from all possible programs to the set
of programs corresponding to the requirements!

»  The specification formalizes the requirements and in the
process adds more constraints.!

»  Architectural design adds constraints, and so on.!

»  Even implementation (programming) adds constraints
by specifying in detail every when and what and so is a
part of the design process.!

02-35!© Gunnar Gotshalks!

Design within the Lifecycle – 7!

•  At each stage, there are fewer choices for the what and
when in the final program text!

02-36!© Gunnar Gotshalks!

Design within the Lifecycle – 8!

•  At each stage, there are fewer choices for the what and
when in the final program text!

•  At each stage the choices must be made within the
constraints imposed by the earlier choice!

02-37!© Gunnar Gotshalks!

Design within the Lifecycle – 9!

•  At each stage, there are fewer choices for the what and
when in the final program text!

•  At each stage the choices must be made within the
constraints imposed by the earlier choices!

»  Or else, backtracking to earlier stages is required!

02-38!© Gunnar Gotshalks!

Design within the Lifecycle – 10!

•  At each stage, there are fewer choices for the what and
when in the final program text!

•  At each stage the choices must be made within the
constraints imposed by the earlier choices!

»  Or else, backtracking to earlier stages is required!

•  At the end of the implementation stage!

»  All constraints have been specified, no choices remain,
there is the complete program text defining a single
executable system!

02-39!© Gunnar Gotshalks!

Class–ADT Consistency Property!

cf ; a!

Abstract_object_1	

 Abstract_object_2	

Concrete_object_1	

 Concrete_object_2	

a	

 a	

af	

cf	

a ; af	

 ≡

Remember this?	

Apply to design documentation	

02-40!© Gunnar Gotshalks!

Level j –Level k Consistency Property!

cf ; a!

Level_j_object_1	

 Level_j_object_2	

Level_k_object_1	

 Level_k_object_2	

a	

 a	

af	

cf	

a ; af	

 ≡

Levels refer to waterfall levels with j < k	

02-41!© Gunnar Gotshalks!

Impl–Spec Consistency Property!

cf ; a!

Spec_object_1	

 Spec_object_2	

Impl_object_1	

 Impl_object_2	

a	

 a	

af	

cf	

a ; af	

 ≡
Document the boxes at the appropriate level	

Document correspondence between specification and program text	

	

 The blue arrows	

Do for every pair of levels	

02-42!© Gunnar Gotshalks!

Seamlessness!

Since design pervades the entire software lifecycle it
is important that supporting methods should apply
to the entire lifecycle in a way that minimizes the
gaps between successive activities!

02-43!© Gunnar Gotshalks!

Seamlessness – 2!

Since design pervades the entire software lifecycle it
is important that supporting methods should apply
to the entire lifecycle in a way that minimizes the
gaps between successive activities!

Corollary: Should be easy to move information
among different notations  
 formal – program text and mathematics  
 <––> informal – documentation text 
 <––> informal – diagrams!

02-44!© Gunnar Gotshalks!

Principles of Public Design!

02-45!© Gunnar Gotshalks!

Principles of Public Design – 1!

•  Principle of Use!

»  Programs will be used by people  
!

02-46!© Gunnar Gotshalks!

Principles of Public Design – 2!

•  Principle of Use!

»  Programs will be used by people  
!

•  Principle of Misuse!

»  Programs will be misused by people  
!

02-47!© Gunnar Gotshalks!

Principles of Public Design – 3!

•  Principle of Use!

»  Programs will be used by people  
!

•  Principle of Misuse!

»  Programs will be misused by people  
!

•  Principle of evolution!

»  Programs will be changed by people  
!

02-48!© Gunnar Gotshalks!

Principles of Public Design – 4!

•  Principle of Use!

»  Programs will be used by people  
!

•  Principle of Misuse!

»  Programs will be misused by people  
!

•  Principle of evolution!

»  Programs will be changed by people  
!

•  Principle of migration!

»  Programs will be moved to new environments by people!

02-49!© Gunnar Gotshalks!

DSQ* – Readable & Understandable!

•  All Design artifacts – program text included – are
primarily to be read and used by people.!

!

*DSQ	

	

Design for Software Quality	

02-50!© Gunnar Gotshalks!

DSQ* – Readable & Understandable – 2!

•  All Design artifacts – program text included – are primarily to be read
and used by people.!

•  Execution is incidental!

02-51!© Gunnar Gotshalks!

DSQ* – Readable & Understandable!

•  All Design artifacts – program text included – are primarily to be read
and used by people.!

•  Execution is incidental!

Primary purpose of design is to communicate	

with other people – even you are somebody	

else in the future, so you must communicate	

with yourself	

02-52!© Gunnar Gotshalks!

DSQ – Works !

•  Complete – Correct – Usable!

•  Efficient as it needs to be!
»  Speed up where necessary after instrumentation 
!

02-53!© Gunnar Gotshalks!

DSQ – Adaptable !

•  All programs evolve over time!

•  Make plausible modifications easy!

»  A sign of a good design is it is easy to modify and adapt
to changing circumstances!

»  Could be used in unexpected ways!

02-54!© Gunnar Gotshalks!

DSQ – On Time & Budget!

•  Time is money!

»  Pay back on investment!

•  Imbedded systems!

»  Programs are only a part of the system!

»  All systems are part of a larger system!

02-55!© Gunnar Gotshalks!

•  The ability of a system to perform according to
specification!

»  First write correct programs!

>  Then worry about efficiency!!!!

»  A fast program that is wrong!

>  Is worse than useless!

DSQ – Correctness!

02-56!© Gunnar Gotshalks!

•  Use an appropriate amount of resources for the task!

»  Space for storing data and temporary results!

»  Execution time!

»  Space – time tradeoff!

»  Communications bandwidth!

DSQ – Efficiency!

02-57!© Gunnar Gotshalks!

DSQ – Robustness & Ease of Use!

•  Robustness!

»  The ability of a software system to react in a reasonable
manner to cases not covered by the specification!

>  Works correctly for defined inputs!

>  Recover gracefully from unexpected inputs!

>  Recover gracefully from hardware and algorithm
errors  
!

•  Ease of use!

»  Including installation!

!

02-58!© Gunnar Gotshalks!

DSQ – Reuse!

•  Use variations in different software products!
»  Same as ... except …!

>  I.e. make changes, then use!

•  The ability of a software system to react in a reasonable
manner when reused  
!

!
!

02-59!© Gunnar Gotshalks!

DSQ – Reuse – 2!

•  NOT just using!
»  A pot is not reused when boiling water!

>  It is meant to boil water on many different occasions  
!

•  Reuse !
»  Pot is used to bail a boat!

>  Maybe by bending it to fit the shape of the hull!

02-60!© Gunnar Gotshalks!

Design Principle (DP) – Abstraction!

•  Extract fundamental parts!

»  Describe what is wanted 
!

•  Ignore the inessential!

»  Do not describe what is not wanted!

02-61!© Gunnar Gotshalks!

Design Principle (DP) – Encapsulation!

•  Information Hiding!

»  Expose only what the user needs to know!

>  The interface  
!

»  Hide implementation details!

02-62!© Gunnar Gotshalks!

DP – Modularity!

•  Handle complexity!
»  Use divide and conquer!

•  Minimize interaction between parts!

02-63!© Gunnar Gotshalks!

OO Design Techniques (OODT)!

•  Basis consists of!

»  Classes!

>  Define abstract data types !

»  Objects!

>  Are instances of those types!

02-64!© Gunnar Gotshalks!

OODT Interfaces & Strong Typing!

•  Interface!

»  Gives the user what they need to know to use objects
from a given class!

>  API – Application Program Interface  
 
!

•  Strong typing!

»  Enforces objects are used correctly by type!

>  Do not take square root of a colour!

02-65!© Gunnar Gotshalks!

OODT Inheritance and Polymorphism!

•  Inheritance!
»  Single and multiple!

>  Provides for reuse  
 
!

•  Polymorphism!
»  Invoke the proper method for an object depending upon

its type!

02-66!© Gunnar Gotshalks!

OODT Assertions!

•  Equip a class and its features with!

»  Pre and post conditions!

»  Class invariants!

»  Loop invariants  
!

•  Use tools to produce documentation from these assertions 
!

•  Monitor assertions at run time!

02-67!© Gunnar Gotshalks!

OODT Information Hiding!

•  Specify what features are available!

»  To all clients!

»  Some clients!

»  No clients!

02-68!© Gunnar Gotshalks!

OODT Exception Handling!

•  Support robustness with a mechanism too recover from
abnormal situations!

02-69!© Gunnar Gotshalks!

OODT Genericity!

•  Genericity!

» Write classes with formal generic parameters
representing arbitrary types  
!

•  Constrained genericity!

»  Arises from genericity and inheritance to constrain
formal generic parameters to a specific type!

02-70!© Gunnar Gotshalks!

OODT Feature Redefinition!

•  Reuse requires the ability to modify an object for a new
environment so features can be redefined  
!

•  Some design decisions must be deferred so provide a
means to specify the interface of a feature without
defining how it does it. !

02-71!© Gunnar Gotshalks!

Structural Design Aspects!

•  Tokenization!
»  What kinds of symbols are in the input and output!

•  Data structures!
»  How and what data structures should be selected!

•  Program structures!
»  How should a program be structured!

!

02-72!© Gunnar Gotshalks!

Structural Design Aspects – 2!

•  Procedure partitioning!
»  How should one decide when a set of operations be made into

a procedure!

•  Class partitioning!
»  How to decide what goes into a class or module!

•  Correspondence!
»  When do structures correspond!

»  When to use communicating sequential processes!

