Verstion 1.2-2000 January 12

COSC 3311 Software Design
Assignment 1: Sparse Matrices
Due: Thursday, January 27, 5:30pm

1 Main Points

1.1 Learning objectives

Eiffel programming with arrays and singly linked lists
Abstract data types, classes and objects

Specification of interfaces

Loop and class invariants

1.2 To hand in

Hand in the following items as a package in order given in the following.

1.

ISA N

Cover page

A listing of the file MatrixElement.e — Section 3.1.1

A listing of the file SparseMatrix.e — Section 3.1.2

Pseudocode documentation for Sparse Matrix features — Section 3.2
Minimal output test program — Section 3.3

2 Assignment Overview

A sparse matrix is a matrix with entries having a zero (or null) value predominating. Rather
than taking up memory storing the zeros, only nonzero entries are stored. For example in
Figure(1 there are only four matrix elements stored (represented with the squares containing the
values 3, -1, 6 and 10) whereas the 8x10 matrix contains 80 elements (see Figure(2 for a standard
2-d matrix).

In addition to the user data (the data values for each matrix element) there is a need to
store metadata —[data about the user data. For the sparse matrix, metadata consists of the

following.
1. The row and column header lists — implemented as one dimensional arrays for this
assignment. There is one singly linked list for each row, and for each column.
2. The maximum number of rows and columns (one number for both) — maximum size of the
array.
3. The actual number of rows and the actual number of columns for the matrix;
4. The maximum row with a nonzero element and the maximum column with a nonzero

element.

Each matrix element appears in a singly linked list of elements in the same row, and a
singly linked list of elements in the same column.

Column header list

Verstion 1.2-2000 January 12

1 2 3 4 5 6 7 8 9 10

nil | nil nil | nil | nil | nil | nil MaxRow Col =10

1 nil actualRows =9

2 nil actualCols = 10
row 3 —+——|3 -1
header | 4 nil maxNonzeroRow = 8
list 5 nil maxNonzeorCol = 10

6 _nil

7 nil |-‘L|

5_ 6] {10

9 nil

10 nil

Figure 1: Example of an 9x10 sparse matrix with 4 nonzero elements at
<3,2>, <3,10>, <8,4> and <8,10>. All other elements are assumed to
be zero. Maximum size of the matrix is 10x10. Compare with Figure 2.

—

—
[cNoNeoNeoNeoNeol YolNol (o]

O©CoONOOOWN =

[cNeoNeoNeoNeNoNoNoNa)
[cNeoNoNeoNeoNoNt NolNol V]
[cNeoNoNeoNoNoNolNoNo)(d]
OO O OO0OO0OOOO|
[cNeoNoNeoNoNoNoNoNal(é))]
[cNeoNoNeoNeoNoNoNoNalleo]
cNeoNeoNeoNeNolNolNoNal N
[cNeoNoNeoNoNoNolNoNalle]
[cNeoNeoNeoNeoNolNoNoNa] (]

Figure 2: The standard way of storing the 9x10 matrix shown in Figure 1. All
zero elements take up space. Note that a non zero element always
appears in the maxNonzero Row and maxNonzeroCol.

Each matrix element (see Figure 3) contains, in addition to the user data, metadata
consisting of the row and column position for the element (must be explicitly stored as physical
location cannot be used; for example, the -1 is physically the second element in row 3 but
logically it is in column 10) and pointers to the next row and element and the next column
element. The pointers are required to link elements in the same row and column so they can be
easily found.

row

columm

P> Dbointer to next in row

data
|

v

Pointer to next in column

Figure 3: Shows the fields in a typical sparse matrix element.

Verstion 1.2-2000 January 12

3 Tasks

3.1 Create interfaces and implementation

You must program your own list features. While a singly linked list class could be used for
either the rows or the columns, it cannot easily be used for both, thus leading to an asymmetric
implementation. It is better to treat rows and columns symmetrically — in the same way. You
will probably need to have some private support features to simplify the implementation.

3.1.1 MatrixElement

Create and document the file MatrixElement.e . It has the following features. They are
straight forward write features to the fields of a matrix element. No get features are required

setRow(row) setColumn(col) setData(data)
setNextRow(nextRowElem) setNextColumn(nextColElem)

3.1.2 SparseMatrix

Create and document the file SparseMatrix.e . It has the following features. You will also
need to add additional read features to get appropriate metadata for the test program
(Section(3.3).

insertElement(row, col, data)
display
sum(sparseMatrix)

InsertElement

InsertElement modifies the sparse matrix structure. If there already exists a matrix
element at <row, col> then data replaces the existing value. Recall that zero elements are not
stored, thus replacing an existing value with zero is equivalent to deleting the element from the
matrix. Recall that by definition the maximum row and column for a particular matrix contain
nonzero data values, thus inserting a data value may increase or decrease the maximum row or
column metadata for the matrix.

Display

Display prints the matrix in the following format. For a matrix with no rows or columns,
print the message “The matrix is empty”. This version of display works for matrices up to 15
columns wide.

An example display for a 3x4 matrix. Keep integers to 3 digits for positive values and 2
digits for negative values.

1| *k kk] k%
2| * % 1 2 x*
3| *k kK k% 6

Sum

Sum is a function to be used as in the following expression — a new matrix is created, neither
matrix] nor matrix2 are to be modified
newMatrix := matrixl.sum(matrix2)
It is the equivalent of the following mathematical expression.
newMatrix = matrix1 + matrix2

Verstion 1.2-2000 January 12

The basis of the sum algorithm is the merging of the elements from both matrices. Think of
the elements of each matrix as being logically a single sequence by considering the rows as
being appended to each other (alternately the columns could be appended). Then do a merge
using the row and column indices. If the locations differ, then a copy of the earlier element is
put into the sum. If the locations are the same, then the data values are summed and the
element put into the sum. Use the insertElement feature to add the new elements to the sum
matrix.

3.2 Pseudocode algorithm description

Consider the algorithms for the sparse matrix features insertElement, display and sum.
1. Document the algorithm using pseudocode for each feature with appropriate overview,
comments, conditions, loop invariants and example diagrams (can be drawn by hand).
2. Include class invariants, for example only row headers with nonnull pointers point to
nonzero elements, the maximum row contains a nonzero element, etc.

Aside from diagrams, documentation should be typed. An ASCII file is acceptable.

3.3 Test implementation

Create and document a minimal output test program to test SparseMatrix. The Eiffel file
should contain appropriate comments to help the reader follow and understand what you are
doing. As necessary add hand annotations and diagrams.

