
Some examples and/or figures were borrowed (with permission) 
from slides prepared by Prof. H. Roumani

Inheritance



 A thing sometimes can be described as a 
specialized type of another thing
◦ E.g., a car is a particular type of vehicle
◦ E.g., a dog is a particular type of animal
◦ E.g., a laptop is a particular type of computer
◦ E.g., a cell phone is a particular type of telephone

 Similarly, a class sometimes can be 
described as an extension or abstraction of 
another class

 The extended class (child) inherits all the 
features of the original class (parent) and 
can implements new/different features for 
its particular purpose
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 Child (class) = Subclass
 Parent (class) = Superclass
 When C inherits from P, every feature of P is in C
 “C inherits from P” = “C extends P”
 Inheritance = “is-a” relationship = specialization
 Inheritance hierarchy: (graphical) organization of 

classes related by inheritance
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 Situation: The University wants a program to 
manage information about past, present, and 
future students

 Task: Give a UML class diagram illustrating 
the inheritance hierarchy
◦ Identify the specific types of students
◦ Identify how they relate using “is-a” relationships
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 Child class sometimes requires a method with 
specialized implementation to take advantage of 
features not available in the parent class

 Overriding:
◦ Child class keeps parent method’s signature and return 

type
 Overloading:
◦ Child class keeps parent method’s name only (number 

or types of parameter are different)
 Shadowing:
◦ Child and parent have field with same name (regardless 

of type)
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 CreditCard class:
◦ Charge purchases
◦ Pay balance

 RewardCard class:
◦ (similar features of CreditCard class)
◦ Earn reward points
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 Some features are common:
◦ Credit limit
◦ Card balance
◦ Issue date
◦ Expiry date
◦ Card number
◦ Holder’s name

 Some features are unique to RewardCards
◦ Points balance
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 Examine the API of CreditCard and 
RewardCard

 Identify inherited features
 Identify overridden features

 Other inheritance hierarchies are detailed on 
pages 357 - 359
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 “When a parent is expected, a child is 
accepted”

 This allows the same code to process both 
parent classes and their (grand) children

 For example, a program intended to handle 
CreditCard objects will be able to handle 
RewardCard objects without modification
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 The following is correct:
◦ CreditCard cc1 = new CreditCard(9, “Adam”);
◦ CreditCard cc2 = new RewardCard(9, “Adam”);
◦ Subsequently, any method that can be called on a 

CreditCard can also be called on a RewardCard
 The following is NOT correct (why?):
◦ RewardCard rc = new CreditCard(9, “Adam”);
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 Ellipse: a rounded shape
◦ Circle: an ellipse whose height and width are 

equal
 Thus, a circle is an ellipse, but an ellipse is 

not necessarily a circle

 Quadrilateral: a four-sided shape
◦ Rectangle: a quadrilateral with four sides meeting 

at 90º
 Square: a rectangle with four sides of equal length

 Thus, a square is a rectangle, but a 
rectangle is not necessarily a square
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 Used to test if a reference points to an 
instance of the parent or child class

◦ CreditCard cc1 = new CreditCard(9, “Adam”);
◦ CreditCard cc2 = new RewardCard(9, “Adam”);

◦ cc1 instanceof CreditCard  true
◦ cc2 instanceof RewardCard  true
◦ cc2 instanceof CreditCard  true (by 

substitutability )
◦ cc1 instanceof RewardCard  false
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 Binding: validation of a method call
 Early binding:
◦ Occurs at compile-time
◦ Binding failure results in a compile-time error

(i.e., cannot find method)
 Late binding:
◦ Applicable only when (explicit) inheritance is used
◦ Occurs at run-time
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 CreditCard cc2 = new RewardCard(9, “Adam”);
cc2. getBalance();

 Early binding:
◦ Verifies “getBalance()” method in CreditCard class

 Late binding:
◦ Determines cc2 points to a RewardCard object
◦ Cannot find “getBalance()” method in RewardCard

because “getBalance()” was not overridden in 
RewardCard
◦ Calls “getBalance()” method in CreditCard class instead
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 CreditCard cc2 = new RewardCard(9, “Adam”);
cc2.charge(500.00);

 Early binding:
◦ Verifies “charge(double amount)” is a method in the 

CreditCard class
 Late binding:
◦ Determines cc2 points to a RewardCard object
◦ Calls “charge(double amount)” method in 

RewardCard class
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 The ability of a method to take on various 
forms

 Occurs when early binding targets a method 
in a parent class and late binding targets the 
method with the same signature in a (grand) 
child class
◦ E.g.: the “charge(double amount)” method from the 

previous example
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 Wrong:
◦ CreditCard cc2 = new RewardCard(9, “Adam”);

balance = cc2.getPointBalance();
◦ Early binding will fail because CreditCard does not 

have a “getPointBalance()” method
 Correct:
◦ CreditCard cc2 = new RewardCard(9, “Adam”);

if (cc2 instanceof RewardCard)
{     balance = ((RewardCard)cc2).getPointBalance();
}
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 Interfaces:
◦ Define only method signatures
◦ Methods have no implemented body
◦ Allow implementer to define class requirements to 

other implementers
 Abstract classes:
◦ Only some (not all) methods are implemented
◦ Allow implementers implement some methods and 

define requirements for others
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 Classes: public class ClassName
 Abstract: public abstract class ClassName
 Interface: public interface InterfaceName
 Interface names appear in italics in the API
 Both can be used as types for declarations
 Neither can be instantiated
◦ Look for a class that extends it or a (static) 

method that returns a pre-made instance of it
◦ E.g., Try to create an instance of Calendar
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 The Object class is the root of all inheritance 
hierarchies

 The Object class defines methods applicable 
to and required by all Java classes.
◦ equals(Object other)
◦ toString()
◦ …

 To ensure all classes have these methods, all 
classes implicitly extend the Object class
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