
Some examples and/or figures were borrowed (with permission)
from slides prepared by Prof. H. Roumani

Inheritance

 A thing sometimes can be described as a
specialized type of another thing
◦ E.g., a car is a particular type of vehicle
◦ E.g., a dog is a particular type of animal
◦ E.g., a laptop is a particular type of computer
◦ E.g., a cell phone is a particular type of telephone

 Similarly, a class sometimes can be
described as an extension or abstraction of
another class

 The extended class (child) inherits all the
features of the original class (parent) and
can implements new/different features for
its particular purpose

EECS1020 F14 (Steven C.) 2

 Child (class) = Subclass
 Parent (class) = Superclass
 When C inherits from P, every feature of P is in C
 “C inherits from P” = “C extends P”
 Inheritance = “is-a” relationship = specialization
 Inheritance hierarchy: (graphical) organization of

classes related by inheritance

EECS1020 F14 (Steven C.) 3

C

P

C

P

G

L

A

R

B

K N M

(c) (b) (a)

EECS1020 F14 (Steven C.) 4

G
en

er
al

Sp
ec

ifi
c

A B

M

EECS1020 F14 (Steven C.) 5

Shape

Ellipse

Circle

Quadrilateral

Rectangle

Square

Trapezoid

EECS1020 F14 (Steven C.) 6

 Situation: The University wants a program to
manage information about past, present, and
future students

 Task: Give a UML class diagram illustrating
the inheritance hierarchy
◦ Identify the specific types of students
◦ Identify how they relate using “is-a” relationships

EECS1020 F14 (Steven C.) 7

Student

Applicant AlumnusRegistrant

UnderGraduate Graduate

EECS1020 F14 (Steven C.) 8

 Child class sometimes requires a method with
specialized implementation to take advantage of
features not available in the parent class

 Overriding:
◦ Child class keeps parent method’s signature and return

type
 Overloading:
◦ Child class keeps parent method’s name only (number

or types of parameter are different)
 Shadowing:
◦ Child and parent have field with same name (regardless

of type)
EECS1020 F14 (Steven C.) 9

 CreditCard class:
◦ Charge purchases
◦ Pay balance

 RewardCard class:
◦ (similar features of CreditCard class)
◦ Earn reward points

EECS1020 F14 (Steven C.) 10

 Some features are common:
◦ Credit limit
◦ Card balance
◦ Issue date
◦ Expiry date
◦ Card number
◦ Holder’s name

 Some features are unique to RewardCards
◦ Points balance

EECS1020 F14 (Steven C.) 11

 Examine the API of CreditCard and
RewardCard

 Identify inherited features
 Identify overridden features

 Other inheritance hierarchies are detailed on
pages 357 - 359

EECS1020 F14 (Steven C.) 12

 “When a parent is expected, a child is
accepted”

 This allows the same code to process both
parent classes and their (grand) children

 For example, a program intended to handle
CreditCard objects will be able to handle
RewardCard objects without modification

EECS1020 F14 (Steven C.) 13

 The following is correct:
◦ CreditCard cc1 = new CreditCard(9, “Adam”);
◦ CreditCard cc2 = new RewardCard(9, “Adam”);
◦ Subsequently, any method that can be called on a

CreditCard can also be called on a RewardCard
 The following is NOT correct (why?):
◦ RewardCard rc = new CreditCard(9, “Adam”);

EECS1020 F14 (Steven C.) 14

Shape

Ellipse

Circle

Quadrilateral

Rectangle

Square

Trapezoid

EECS1020 F14 (Steven C.) 15

 Ellipse: a rounded shape
◦ Circle: an ellipse whose height and width are

equal
 Thus, a circle is an ellipse, but an ellipse is

not necessarily a circle

 Quadrilateral: a four-sided shape
◦ Rectangle: a quadrilateral with four sides meeting

at 90º
 Square: a rectangle with four sides of equal length

 Thus, a square is a rectangle, but a
rectangle is not necessarily a square

EECS1020 F14 (Steven C.) 16

 Used to test if a reference points to an
instance of the parent or child class

◦ CreditCard cc1 = new CreditCard(9, “Adam”);
◦ CreditCard cc2 = new RewardCard(9, “Adam”);

◦ cc1 instanceof CreditCard true
◦ cc2 instanceof RewardCard true
◦ cc2 instanceof CreditCard true (by

substitutability)
◦ cc1 instanceof RewardCard false

EECS1020 F14 (Steven C.) 17

 Binding: validation of a method call
 Early binding:
◦ Occurs at compile-time
◦ Binding failure results in a compile-time error

(i.e., cannot find method)
 Late binding:
◦ Applicable only when (explicit) inheritance is used
◦ Occurs at run-time

EECS1020 F14 (Steven C.) 18

 CreditCard cc2 = new RewardCard(9, “Adam”);
cc2. getBalance();

 Early binding:
◦ Verifies “getBalance()” method in CreditCard class

 Late binding:
◦ Determines cc2 points to a RewardCard object
◦ Cannot find “getBalance()” method in RewardCard

because “getBalance()” was not overridden in
RewardCard
◦ Calls “getBalance()” method in CreditCard class instead

EECS1020 F14 (Steven C.) 19

 CreditCard cc2 = new RewardCard(9, “Adam”);
cc2.charge(500.00);

 Early binding:
◦ Verifies “charge(double amount)” is a method in the

CreditCard class
 Late binding:
◦ Determines cc2 points to a RewardCard object
◦ Calls “charge(double amount)” method in

RewardCard class

EECS1020 F14 (Steven C.) 20

 The ability of a method to take on various
forms

 Occurs when early binding targets a method
in a parent class and late binding targets the
method with the same signature in a (grand)
child class
◦ E.g.: the “charge(double amount)” method from the

previous example

EECS1020 F14 (Steven C.) 21

 Wrong:
◦ CreditCard cc2 = new RewardCard(9, “Adam”);

balance = cc2.getPointBalance();
◦ Early binding will fail because CreditCard does not

have a “getPointBalance()” method
 Correct:
◦ CreditCard cc2 = new RewardCard(9, “Adam”);

if (cc2 instanceof RewardCard)
{ balance = ((RewardCard)cc2).getPointBalance();
}

EECS1020 F14 (Steven C.) 22

 Interfaces:
◦ Define only method signatures
◦ Methods have no implemented body
◦ Allow implementer to define class requirements to

other implementers
 Abstract classes:
◦ Only some (not all) methods are implemented
◦ Allow implementers implement some methods and

define requirements for others

EECS1020 F14 (Steven C.) 23

 Classes: public class ClassName
 Abstract: public abstract class ClassName
 Interface: public interface InterfaceName
 Interface names appear in italics in the API
 Both can be used as types for declarations
 Neither can be instantiated
◦ Look for a class that extends it or a (static)

method that returns a pre-made instance of it
◦ E.g., Try to create an instance of Calendar

EECS1020 F14 (Steven C.) 24

 The Object class is the root of all inheritance
hierarchies

 The Object class defines methods applicable
to and required by all Java classes.
◦ equals(Object other)
◦ toString()
◦ …

 To ensure all classes have these methods, all
classes implicitly extend the Object class

EECS1020 F14 (Steven C.) 25

