Java By Abstraction: Chapter 8
Aggregation




Aggregation

» Represents a "has-a” relationship between two
classes

» A class Cis an aggregate if it has an attribute of
type 7and 7is NOT a primitive type OR a String

» Attribute 7is called the "aggregated part’, “part’,
“‘aggregated component”, or “component”

» UML diagram (e.qg., Investment has a Stock):

Investment Stock
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Composition

» Aggregate and aggregate part are created
together (and reclaimed by the GC together)

» Client holds no reference to aggregate part

» UML diagram (e.qg., CreditCard has two
Dates):

Calendar
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Aggregation-Composition Distinction

» Camera and film (text p. 293)

» Computer and monitor

- Desktop:

- Aggregation: computer and monitor can be
purchased/replaced separately

> Laptop:
- Composition: computer and monitor form a cohesive
unit; cannot be separated and still considered a laptop
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Constructors

» For aggregates:
> Client instantiates attribute object (that will serve
as aggregate part) and retains reference to it

> Client instantiates aggregate by passing
aggregate part as a parameter to constructor

» For compositions:

> Instantiating composition class also instantiates
the attribute object (the “part”)

- If client passes attribute object as constructor
parameter, object state is copied to a new object;
this way, the client still does not hold any
reference to the “part’
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AcCcessors

» Format: getNameOfAttribute()

» For aggregates:
- Returns reference to the aggregate part
» For compositions:

- Remember composition rule (from slide 3):
“Client holds no reference to aggregate part”

> Creates a copy/clone of the aggregate part and
returns a reference to the copy/clone
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Copy or Reference?

» Call accessor twice, save returned references

» Compare the references’ memory addresses
using the == relational operator

» If true > aggregation returned references
» If false > composition returned copies
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Mutators

» Format: setNameOfAttribute(newlnstance)

» Changes where the attribute’s reference
points

- Changes to the attribute’s state handled by
mutators in the attribute’s class

» For aggregates:

- Reference to the aggregate part is changed to point
to the passed instance (i.e., the method parameter)

» For compositions:
- None (Aggregate part’s reference cannot change!)
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Aggregate Cloning

» Aggregate attributes could also be
aggregates

» When making a copy of an aggregate, how
should the attributes be copied?
- Aliasing: copy references only
- Shallow copy: create copies of attribute objects

- Deep copy: create copies of attribute objects, and
create copies of the copies’ attribute objects
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Shallow Copy
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Deep Copy
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Collections




What is a Collection

» Aggregate class with variable multiplicity

Wallet > - Bill
- /\ *
Portfolio K> Investment
» Each instance of the aggregate class is called

element in the collection
- Wallet is a collection of Bill elements
o Portfolio is a collection of Investment elements

» Chapter 8: collections in type.lib
» Chapter 10: Java’s collection framework
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Creation

» Constructor creates an empty collection

» Collection capacity can be static (i.e., fixed)
or dynamic (i.e., able to change)

» Fixed capacity

- Easy for Java (and implementer) to manage
memory

> Collection can become full during run-time
» Dynamic capacity
> Collection capacity can grow (or shrink) during

run-time to efficiently accommodate various
number of elements
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Adding Elements

» Method typically called add(e/ement)

» Two possible problems can occur:
- Collection is full (only with fixed capacity collections)
- Element already present (some collections require all
elements to be unique)
» Return type:

- boolean: if addition can fail (due to full capacity or
duplicate element)

- void: if no possible problems
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Indexed Traversal

» Possible if elements are indexed (0..size-1)
» Use method size() to determine max index

» Use method get(/ndex), getElement(/ndex),
etc. to access element at given index

» Access elements “randomly”
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Chained Traversal

» Elements accessible only in some pre-defined
order

» Use method getFirst() to get the “first’
element

» Use method getNext() to access subsequent
elements in the collection

» End of collection - getNext() returns null

» Can call getFirst() to return to the first
element
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Searching

» Common task: search for element(s) in a
collection matching a target value

» Time to search for an element can vary based
on:

- Number of elements (determined by user)
> Search technique (determined by programmer)

» How to choose a search algorithm?

» How does the search time grow with respect to
increases in number of elements?
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Runtime Complexity

» In the worst-case condition, how does the
runtime of an algorithm grow with respect to
the size of input (N)?

» Expressed in Big-O notation
> O(1): the runtime varies by a constant factor
0 O(NKI the runtime grows proportionally with N
> O(2'7): the runtime grows exponentially with N

(0]
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Runtime Complexity
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Search Complexity

» Task: search for all matching elements

» Elements in no order
- Requires linear search (i.e., check each element)
- Best case: O(N)

» Elements in sorted order

> Can use binary search
-+ Pick the middle element
- Target element bigger or smaller than middle element?
- If bigger look at “top” half; if smaller look at “bottom” half

- Best case: O(logN)
» Element values are indexed
- Access any element directly
- Best case: O(1)
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