
Some examples and/or figures were borrowed (with permission)
from slides prepared by Prof. H. Roumani

Aggregation

 Represents a “has-a” relationship between two
classes

 A class C is an aggregate if it has an attribute of
type T and T is NOT a primitive type OR a String

 Attribute T is called the “aggregated part”, “part”,
“aggregated component”, or “component”

 UML diagram (e.g., Investment has a Stock):

EECS1020 F14 (Steven C.) 2

) Investment Portfolio *

Stock Investment 1

 Aggregate and aggregate part are created
together (and reclaimed by the GC together)

 Client holds no reference to aggregate part
 UML diagram (e.g., CreditCard has two

Dates):

EECS1020 F14 (Steven C.) 3

Date CreditCard 2

Calendar

Date
1

 Camera and film (text p. 293)
 Computer and monitor
◦ Desktop:
 Aggregation: computer and monitor can be

purchased/replaced separately
◦ Laptop:
 Composition: computer and monitor form a cohesive

unit; cannot be separated and still considered a laptop

EECS1020 F14 (Steven C.) 4

 For aggregates:
◦ Client instantiates attribute object (that will serve

as aggregate part) and retains reference to it
◦ Client instantiates aggregate by passing

aggregate part as a parameter to constructor
 For compositions:
◦ Instantiating composition class also instantiates

the attribute object (the “part”)
◦ If client passes attribute object as constructor

parameter, object state is copied to a new object;
this way, the client still does not hold any
reference to the “part”

EECS1020 F14 (Steven C.) 5

 Format: getNameOfAttribute()
 For aggregates:
◦ Returns reference to the aggregate part

 For compositions:
◦ Remember composition rule (from slide 3):

“Client holds no reference to aggregate part”
◦ Creates a copy/clone of the aggregate part and

returns a reference to the copy/clone

EECS1020 F14 (Steven C.) 6

 Call accessor twice, save returned references
 Compare the references’ memory addresses

using the == relational operator
 If true aggregation returned references
 If false composition returned copies

EECS1020 F14 (Steven C.) 7

 Format: setNameOfAttribute(newInstance)
 Changes where the attribute’s reference

points
◦ Changes to the attribute’s state handled by

mutators in the attribute’s class
 For aggregates:
◦ Reference to the aggregate part is changed to point

to the passed instance (i.e., the method parameter)
 For compositions:
◦ None (Aggregate part’s reference cannot change!)

EECS1020 F14 (Steven C.) 8

 Aggregate attributes could also be
aggregates

 When making a copy of an aggregate, how
should the attributes be copied?
◦ Aliasing: copy references only
◦ Shallow copy: create copies of attribute objects
◦ Deep copy: create copies of attribute objects, and

create copies of the copies’ attribute objects

EECS1020 F14 (Steven C.) 9

Memory (RAM)

x y

Aggregate Object

Part ObjectPart Object

EECS1020 F14 (Steven C.) 10

Memory (RAM)

x y

Aggregate Object Aggregate Object

Part Object Part Object

EECS1020 F14 (Steven C.) 11

Memory (RAM)

x y

Aggregate Object Aggregate Object

Part Object Part Object Part ObjectPart Object

EECS1020 F14 (Steven C.) 12

Some examples and/or figures were borrowed (with permission)
from slides prepared by Prof. H. Roumani

 Aggregate class with variable multiplicity

 Each instance of the aggregate class is called an
element in the collection
◦ Wallet is a collection of Bill elements
◦ Portfolio is a collection of Investment elements

 Chapter 8: collections in type.lib
 Chapter 10: Java’s collection framework

EECS1020 F14 (Steven C.) 14

 Investment Portfolio *

 Bill Wallet *

 Constructor creates an empty collection
 Collection capacity can be static (i.e., fixed)

or dynamic (i.e., able to change)
 Fixed capacity
◦ Easy for Java (and implementer) to manage

memory
◦ Collection can become full during run-time

 Dynamic capacity
◦ Collection capacity can grow (or shrink) during

run-time to efficiently accommodate various
number of elements

EECS1020 F14 (Steven C.) 15

 Method typically called add(element)
 Two possible problems can occur:
◦ Collection is full (only with fixed capacity collections)
◦ Element already present (some collections require all

elements to be unique)
 Return type:
◦ boolean: if addition can fail (due to full capacity or

duplicate element)
◦ void: if no possible problems

EECS1020 F14 (Steven C.) 16

 Possible if elements are indexed (0..size-1)
 Use method size() to determine max index
 Use method get(index), getElement(index),

etc. to access element at given index
 Access elements “randomly”

EECS1020 F14 (Steven C.) 17

 Elements accessible only in some pre-defined
order

 Use method getFirst() to get the “first”
element

 Use method getNext() to access subsequent
elements in the collection

 End of collection getNext() returns null
 Can call getFirst() to return to the first

element

EECS1020 F14 (Steven C.) 18

 Common task: search for element(s) in a
collection matching a target value

 Time to search for an element can vary based
on:
◦ Number of elements (determined by user)
◦ Search technique (determined by programmer)

 How to choose a search algorithm?
 How does the search time grow with respect to

increases in number of elements?

EECS1020 F14 (Steven C.) 19

 In the worst-case condition, how does the
runtime of an algorithm grow with respect to
the size of input (N)?

 Expressed in Big-O notation
◦ O(1): the runtime varies by a constant factor
◦ O(N): the runtime grows proportionally with N
◦ O(2N): the runtime grows exponentially with N
◦ …

EECS1020 F14 (Steven C.) 20

Input Size

R
un

tim
e

O(1) O(logN) O(N) O(NlogN)
O(N^2) O(2^N) O(N!)

EECS1020 F14 (Steven C.) 21

Input Size

R
un

tim
e

O(logN) O(N) O(NlogN) O(N^2)

EECS1020 F14 (Steven C.) 22

 Task: search for all matching elements
 Elements in no order
◦ Requires linear search (i.e., check each element)
◦ Best case: O(N)

 Elements in sorted order
◦ Can use binary search
 Pick the middle element
 Target element bigger or smaller than middle element?
 If bigger look at “top” half; if smaller look at “bottom” half
◦ Best case: O(logN)

 Element values are indexed
◦ Access any element directly
◦ Best case: O(1)

EECS1020 F14 (Steven C.) 23

