
Some examples and/or figures were borrowed (with permission)
from slides prepared by Prof. H. Roumani

Aggregation

 Represents a “has-a” relationship between two
classes

 A class C is an aggregate if it has an attribute of
type T and T is NOT a primitive type OR a String

 Attribute T is called the “aggregated part”, “part”,
“aggregated component”, or “component”

 UML diagram (e.g., Investment has a Stock):

EECS1020 F14 (Steven C.) 2

) Investment Portfolio *

Stock Investment 1

 Aggregate and aggregate part are created
together (and reclaimed by the GC together)

 Client holds no reference to aggregate part
 UML diagram (e.g., CreditCard has two

Dates):

EECS1020 F14 (Steven C.) 3

Date CreditCard 2

Calendar

Date
1

 Camera and film (text p. 293)
 Computer and monitor
◦ Desktop:
 Aggregation: computer and monitor can be

purchased/replaced separately
◦ Laptop:
 Composition: computer and monitor form a cohesive

unit; cannot be separated and still considered a laptop

EECS1020 F14 (Steven C.) 4

 For aggregates:
◦ Client instantiates attribute object (that will serve

as aggregate part) and retains reference to it
◦ Client instantiates aggregate by passing

aggregate part as a parameter to constructor
 For compositions:
◦ Instantiating composition class also instantiates

the attribute object (the “part”)
◦ If client passes attribute object as constructor

parameter, object state is copied to a new object;
this way, the client still does not hold any
reference to the “part”

EECS1020 F14 (Steven C.) 5

 Format: getNameOfAttribute()
 For aggregates:
◦ Returns reference to the aggregate part

 For compositions:
◦ Remember composition rule (from slide 3):

“Client holds no reference to aggregate part”
◦ Creates a copy/clone of the aggregate part and

returns a reference to the copy/clone

EECS1020 F14 (Steven C.) 6

 Call accessor twice, save returned references
 Compare the references’ memory addresses

using the == relational operator
 If true  aggregation returned references
 If false  composition returned copies

EECS1020 F14 (Steven C.) 7

 Format: setNameOfAttribute(newInstance)
 Changes where the attribute’s reference

points
◦ Changes to the attribute’s state handled by

mutators in the attribute’s class
 For aggregates:
◦ Reference to the aggregate part is changed to point

to the passed instance (i.e., the method parameter)
 For compositions:
◦ None (Aggregate part’s reference cannot change!)

EECS1020 F14 (Steven C.) 8

 Aggregate attributes could also be
aggregates

 When making a copy of an aggregate, how
should the attributes be copied?
◦ Aliasing: copy references only
◦ Shallow copy: create copies of attribute objects
◦ Deep copy: create copies of attribute objects, and

create copies of the copies’ attribute objects

EECS1020 F14 (Steven C.) 9

Memory (RAM)

x y

Aggregate Object

Part ObjectPart Object

EECS1020 F14 (Steven C.) 10

Memory (RAM)

x y

Aggregate Object Aggregate Object

Part Object Part Object

EECS1020 F14 (Steven C.) 11

Memory (RAM)

x y

Aggregate Object Aggregate Object

Part Object Part Object Part ObjectPart Object

EECS1020 F14 (Steven C.) 12

Some examples and/or figures were borrowed (with permission)
from slides prepared by Prof. H. Roumani

 Aggregate class with variable multiplicity

 Each instance of the aggregate class is called an
element in the collection
◦ Wallet is a collection of Bill elements
◦ Portfolio is a collection of Investment elements

 Chapter 8: collections in type.lib
 Chapter 10: Java’s collection framework

EECS1020 F14 (Steven C.) 14

 Investment Portfolio *

 Bill Wallet *

 Constructor creates an empty collection
 Collection capacity can be static (i.e., fixed)

or dynamic (i.e., able to change)
 Fixed capacity
◦ Easy for Java (and implementer) to manage

memory
◦ Collection can become full during run-time

 Dynamic capacity
◦ Collection capacity can grow (or shrink) during

run-time to efficiently accommodate various
number of elements

EECS1020 F14 (Steven C.) 15

 Method typically called add(element)
 Two possible problems can occur:
◦ Collection is full (only with fixed capacity collections)
◦ Element already present (some collections require all

elements to be unique)
 Return type:
◦ boolean: if addition can fail (due to full capacity or

duplicate element)
◦ void: if no possible problems

EECS1020 F14 (Steven C.) 16

 Possible if elements are indexed (0..size-1)
 Use method size() to determine max index
 Use method get(index), getElement(index),

etc. to access element at given index
 Access elements “randomly”

EECS1020 F14 (Steven C.) 17

 Elements accessible only in some pre-defined
order

 Use method getFirst() to get the “first”
element

 Use method getNext() to access subsequent
elements in the collection

 End of collection  getNext() returns null
 Can call getFirst() to return to the first

element

EECS1020 F14 (Steven C.) 18

 Common task: search for element(s) in a
collection matching a target value

 Time to search for an element can vary based
on:
◦ Number of elements (determined by user)
◦ Search technique (determined by programmer)

 How to choose a search algorithm?
 How does the search time grow with respect to

increases in number of elements?

EECS1020 F14 (Steven C.) 19

 In the worst-case condition, how does the
runtime of an algorithm grow with respect to
the size of input (N)?

 Expressed in Big-O notation
◦ O(1): the runtime varies by a constant factor
◦ O(N): the runtime grows proportionally with N
◦ O(2N): the runtime grows exponentially with N
◦ …

EECS1020 F14 (Steven C.) 20

Input Size

R
un

tim
e

O(1) O(logN) O(N) O(NlogN)
O(N^2) O(2^N) O(N!)

EECS1020 F14 (Steven C.) 21

Input Size

R
un

tim
e

O(logN) O(N) O(NlogN) O(N^2)

EECS1020 F14 (Steven C.) 22

 Task: search for all matching elements
 Elements in no order
◦ Requires linear search (i.e., check each element)
◦ Best case: O(N)

 Elements in sorted order
◦ Can use binary search
 Pick the middle element
 Target element bigger or smaller than middle element?
 If bigger look at “top” half; if smaller look at “bottom” half
◦ Best case: O(logN)

 Element values are indexed
◦ Access any element directly
◦ Best case: O(1)

EECS1020 F14 (Steven C.) 23

