Java By Abstraction: Chapter 8
Aggregation

Aggregation

» Represents a "has-a” relationship between two
classes

» A class Cis an aggregate if it has an attribute of
type 7and 7is NOT a primitive type OR a String

» Attribute 7is called the "aggregated part’, “part’,
“‘aggregated component”, or “component”

» UML diagram (e.qg., Investment has a Stock):

Investment Stock

OO

Portfolio Investment

EECS1020 F14 (Steven C.)

Composition

» Aggregate and aggregate part are created
together (and reclaimed by the GC together)

» Client holds no reference to aggregate part

» UML diagram (e.qg., CreditCard has two
Dates):

Calendar

CreditCard "—2 Date ?
1

Date

EECS1020 F14 (Steven C.)

Aggregation-Composition Distinction

» Camera and film (text p. 293)

» Computer and monitor

- Desktop:

- Aggregation: computer and monitor can be
purchased/replaced separately

> Laptop:
- Composition: computer and monitor form a cohesive
unit; cannot be separated and still considered a laptop

EECS1020 F14 (Steven C.)

Constructors

» For aggregates:
> Client instantiates attribute object (that will serve
as aggregate part) and retains reference to it

> Client instantiates aggregate by passing
aggregate part as a parameter to constructor

» For compositions:

> Instantiating composition class also instantiates
the attribute object (the “part”)

- If client passes attribute object as constructor
parameter, object state is copied to a new object;
this way, the client still does not hold any
reference to the “part’

EECS1020 F14 (Steven C.)

AcCcessors

» Format: getNameOfAttribute()

» For aggregates:
- Returns reference to the aggregate part
» For compositions:

- Remember composition rule (from slide 3):
“Client holds no reference to aggregate part”

> Creates a copy/clone of the aggregate part and
returns a reference to the copy/clone

EECS1020 F14 (Steven C.)

Copy or Reference?

» Call accessor twice, save returned references

» Compare the references’ memory addresses
using the == relational operator

» If true > aggregation returned references
» If false > composition returned copies

EECS1020 F14 (Steven C.)

Mutators

» Format: setNameOfAttribute(newlnstance)

» Changes where the attribute’s reference
points

- Changes to the attribute’s state handled by
mutators in the attribute’s class

» For aggregates:

- Reference to the aggregate part is changed to point
to the passed instance (i.e., the method parameter)

» For compositions:
- None (Aggregate part’s reference cannot change!)

EECS1020 F14 (Steven C.)

Aggregate Cloning

» Aggregate attributes could also be
aggregates

» When making a copy of an aggregate, how
should the attributes be copied?
- Aliasing: copy references only
- Shallow copy: create copies of attribute objects

- Deep copy: create copies of attribute objects, and
create copies of the copies’ attribute objects

EECS1020 F14 (Steven C.)

Al

iasing

Memory (RAM)

Adggregate Object

N

Part Object

Part Object

EECS1020 F14 (Steven C.)

10

Shallow Copy

Memory (RAM)

Adgagregate Object

Adggregate Object

Part Object

Part Object

EECS1020 F14 (Steven C.)

11

Deep Copy

Memory (RAM)

Adgagregate Object

AN

Adggregate Object

AN

Part Object " Part Object

Part Object " Part Object

EECS1020 F14 (Steven C.)

12

Collections

What is a Collection

» Aggregate class with variable multiplicity

Wallet > - Bill
- /\ *
Portfolio K> Investment
» Each instance of the aggregate class is called

element in the collection
- Wallet is a collection of Bill elements
o Portfolio is a collection of Investment elements

» Chapter 8: collections in type.lib
» Chapter 10: Java’s collection framework

EECS1020 F14 (Steven C.)

Creation

» Constructor creates an empty collection

» Collection capacity can be static (i.e., fixed)
or dynamic (i.e., able to change)

» Fixed capacity

- Easy for Java (and implementer) to manage
memory

> Collection can become full during run-time
» Dynamic capacity
> Collection capacity can grow (or shrink) during

run-time to efficiently accommodate various
number of elements

EECS1020 F14 (Steven C.) 15

Adding Elements

» Method typically called add(e/ement)

» Two possible problems can occur:
- Collection is full (only with fixed capacity collections)
- Element already present (some collections require all
elements to be unique)
» Return type:

- boolean: if addition can fail (due to full capacity or
duplicate element)

- void: if no possible problems

EECS1020 F14 (Steven C.) 16

Indexed Traversal

» Possible if elements are indexed (0..size-1)
» Use method size() to determine max index

» Use method get(/ndex), getElement(/ndex),
etc. to access element at given index

» Access elements “randomly”

EECS1020 F14 (Steven C.) 17

Chained Traversal

» Elements accessible only in some pre-defined
order

» Use method getFirst() to get the “first’
element

» Use method getNext() to access subsequent
elements in the collection

» End of collection - getNext() returns null

» Can call getFirst() to return to the first
element

EECS1020 F14 (Steven C.) 18

Searching

» Common task: search for element(s) in a
collection matching a target value

» Time to search for an element can vary based
on:

- Number of elements (determined by user)
> Search technique (determined by programmer)

» How to choose a search algorithm?

» How does the search time grow with respect to
increases in number of elements?

EECS1020 F14 (Steven C.)

19

Runtime Complexity

» In the worst-case condition, how does the
runtime of an algorithm grow with respect to
the size of input (N)?

» Expressed in Big-O notation
> O(1): the runtime varies by a constant factor
0 O(NKI the runtime grows proportionally with N
> O(2'7): the runtime grows exponentially with N

(0]

EECS1020 F14 (Steven C.) 20

Runtime Complexity

)
£
c
=) 4
Y _ A=
Input Size
—0(1) —O(logN) —O(N) — O(NlogN)

—O(N*2) —O(2”N)

—O(N!)

p—

EECS1020 F14 (Steven C.)

21

Runtime Complexity

Runtime

Input Size

— O(logN) — O(N) — O(NlogN) — O(N"2)

Search Complexity

» Task: search for all matching elements

» Elements in no order
- Requires linear search (i.e., check each element)
- Best case: O(N)

» Elements in sorted order

> Can use binary search
-+ Pick the middle element
- Target element bigger or smaller than middle element?
- If bigger look at “top” half; if smaller look at “bottom” half

- Best case: O(logN)
» Element values are indexed
- Access any element directly
- Best case: O(1)

EECS1020 F14 (Steven C.) 23

