
Some examples and/or figures were borrowed (with permission) 
from slides prepared by Prof. H. Roumani 

Software Development 



 Design 
 Implementation 
 Testing 
 Deployment 

EECS1020 F14 (Steven C.) 2 



 How the system will work 
 Algorithm to generate the desired output 
 Outline delegation of tasks 
 Identify needed classes, methods, and 

attributes 
 Determine how data will be exchanged 

amongst the various components 

EECS1020 F14 (Steven C.) 3 



 Involves coding… 
◦ Existing classes can be used/extended to meet 

requirements 
◦ New class created from scratch 

 …and unit testing 
◦ Functionality of classes are tested individually to 

ensure adherence to specifications 
◦ (more details shortly) 

EECS1020 F14 (Steven C.) 4 



 Evaluate entire system as a whole 
 Ensure components work well together 
 Ensure components exchange data correctly 
◦ Data formatting is especially important 
◦ Involves meeting specifications, not just “for looks” 

EECS1020 F14 (Steven C.) 5 



 Deployment 
◦ Package, deliver, and install system for customer 

 Operation 
◦ Ensure functionality at the customer’s location 
◦ Train customer’s employees to operate system 

 Maintenance 
◦ Develop and deploy updates, patches, and fixes 
◦ Perform upgrades 

EECS1020 F14 (Steven C.) 6 



 

REQUIREMENTS 

DESIGN 

IMPLEMENTATION 

TESTING 

DEPLOYMENT 

EECS1020 F14 (Steven C.) 7 



 Detection and handling of risks is delayed 
until the testing phase 

 Risks include: 
◦ Interoperability problems amongst components 
◦ Requirement changes 
◦ Incorrect assumptions 

EECS1020 F14 (Steven C.) 8 



 

DEPLOY START 

DESIGN 

REQUIREMENTS TESTING 

IMPLEMENTATION 

EVALUATION 

EECS1020 F14 (Steven C.) 9 



 Agile software development 
 

 Extreme Programming (XP) 
 

 (IBM) Rational Unified Process (RUP) 
 

 SCRUM development 

EECS1020 F14 (Steven C.) 10 



Some examples and/or figures were borrowed (with permission) 
from slides prepared by Prof. H. Roumani 



 Visual language used to describe 
characteristics and interactions of software 
components 
 

 Formal language with rules but also flexible 
 

 UML tools convert UML diagrams ↔ code 

EECS1020 F14 (Steven C.) 12 



 

+ getNumerator(): long 
+ setFraction(Fraction) 
+ toString(): String 

+ isQuoted: boolean 
+ separator: char 

type::lib::Fraction 

+ isQuoted: boolean 
+ separator: char 

EECS1020 F14 (Steven C.) 13 



 
 

B Dependency: A uses B 

Aggregation: A has a B 
 

B 

 

A 

 

A 

 

A 

Inheritance: A is a B 
 

B 

EECS1020 F14 (Steven C.) 14 



Some examples and/or figures were borrowed (with permission) 
from slides prepared by Prof. H. Roumani 



 Written proofs using: 
◦ Discrete mathematics 
 Axioms 
 Theorems 

 
 Covered in MATH1019 and MATH1090 

EECS1020 F14 (Steven C.) 16 



 Collection of test cases 
 Test cases should include: 
◦ Values within range 
◦ Values outside range 
◦ Boundary cases 

 Each case should hold meaning and test a 
specific aspect of the component 

 Cover as many execution paths as possible 
 Employ regression testing 

EECS1020 F14 (Steven C.) 17 



 Program to automate the testing of a 
component 

 Takes unit test input 
 Compares component output to oracle’s 

output 
 Oracle: 
◦ Separate mechanism, component, or algorithm 
◦ Provides the “correct answer” 

 Can you give an example of a test harness? 

EECS1020 F14 (Steven C.) 18 



 

HARNESS 

file 

random 

loop 

input 

SUITE 

algorithm 

verifica-
tion 

approxi-
mation 

file 

ORACLE 

UNIT 

EECS1020 F14 (Steven C.) 19 



 Determine and fix source of error 
 Techniques: 
◦ Examine code (tedious, error-prone) 
◦ Print statements to output intermediate 

steps/values 
◦ Examine error messages for source details 
◦ Use debuggers 

EECS1020 F14 (Steven C.) 20 


