
Some examples and/or figures were borrowed (with permission) 
from slides prepared by Prof. H. Roumani 

Software Development 



 Design 
 Implementation 
 Testing 
 Deployment 

EECS1020 F14 (Steven C.) 2 



 How the system will work 
 Algorithm to generate the desired output 
 Outline delegation of tasks 
 Identify needed classes, methods, and 

attributes 
 Determine how data will be exchanged 

amongst the various components 

EECS1020 F14 (Steven C.) 3 



 Involves coding… 
◦ Existing classes can be used/extended to meet 

requirements 
◦ New class created from scratch 

 …and unit testing 
◦ Functionality of classes are tested individually to 

ensure adherence to specifications 
◦ (more details shortly) 

EECS1020 F14 (Steven C.) 4 



 Evaluate entire system as a whole 
 Ensure components work well together 
 Ensure components exchange data correctly 
◦ Data formatting is especially important 
◦ Involves meeting specifications, not just “for looks” 

EECS1020 F14 (Steven C.) 5 



 Deployment 
◦ Package, deliver, and install system for customer 

 Operation 
◦ Ensure functionality at the customer’s location 
◦ Train customer’s employees to operate system 

 Maintenance 
◦ Develop and deploy updates, patches, and fixes 
◦ Perform upgrades 

EECS1020 F14 (Steven C.) 6 



 

REQUIREMENTS 

DESIGN 

IMPLEMENTATION 

TESTING 

DEPLOYMENT 

EECS1020 F14 (Steven C.) 7 



 Detection and handling of risks is delayed 
until the testing phase 

 Risks include: 
◦ Interoperability problems amongst components 
◦ Requirement changes 
◦ Incorrect assumptions 

EECS1020 F14 (Steven C.) 8 



 

DEPLOY START 

DESIGN 

REQUIREMENTS TESTING 

IMPLEMENTATION 

EVALUATION 

EECS1020 F14 (Steven C.) 9 



 Agile software development 
 

 Extreme Programming (XP) 
 

 (IBM) Rational Unified Process (RUP) 
 

 SCRUM development 

EECS1020 F14 (Steven C.) 10 



Some examples and/or figures were borrowed (with permission) 
from slides prepared by Prof. H. Roumani 



 Visual language used to describe 
characteristics and interactions of software 
components 
 

 Formal language with rules but also flexible 
 

 UML tools convert UML diagrams ↔ code 

EECS1020 F14 (Steven C.) 12 



 

+ getNumerator(): long 
+ setFraction(Fraction) 
+ toString(): String 

+ isQuoted: boolean 
+ separator: char 

type::lib::Fraction 

+ isQuoted: boolean 
+ separator: char 

EECS1020 F14 (Steven C.) 13 



 
 

B Dependency: A uses B 

Aggregation: A has a B 
 

B 

 

A 

 

A 

 

A 

Inheritance: A is a B 
 

B 

EECS1020 F14 (Steven C.) 14 



Some examples and/or figures were borrowed (with permission) 
from slides prepared by Prof. H. Roumani 



 Written proofs using: 
◦ Discrete mathematics 
 Axioms 
 Theorems 

 
 Covered in MATH1019 and MATH1090 

EECS1020 F14 (Steven C.) 16 



 Collection of test cases 
 Test cases should include: 
◦ Values within range 
◦ Values outside range 
◦ Boundary cases 

 Each case should hold meaning and test a 
specific aspect of the component 

 Cover as many execution paths as possible 
 Employ regression testing 

EECS1020 F14 (Steven C.) 17 



 Program to automate the testing of a 
component 

 Takes unit test input 
 Compares component output to oracle’s 

output 
 Oracle: 
◦ Separate mechanism, component, or algorithm 
◦ Provides the “correct answer” 

 Can you give an example of a test harness? 

EECS1020 F14 (Steven C.) 18 



 

HARNESS 

file 

random 

loop 

input 

SUITE 

algorithm 

verifica-
tion 

approxi-
mation 

file 

ORACLE 

UNIT 

EECS1020 F14 (Steven C.) 19 



 Determine and fix source of error 
 Techniques: 
◦ Examine code (tedious, error-prone) 
◦ Print statements to output intermediate 

steps/values 
◦ Examine error messages for source details 
◦ Use debuggers 

EECS1020 F14 (Steven C.) 20 


