
Some examples and/or figures were borrowed (with permission)
from slides prepared by Prof. H. Roumani

Strings

 Sequence of characters

 Non-primitive (i.e., object) data type

 Read-only objects (recreated but not
modified)
◦ Any “changes” are actually new objects initialized

with the new value

EECS1020 F14 (Steven C.) 2

 Remember, Strings are objects
 Strings can be initialized like objects:

String name = new String(“My name is Steven”);
 But Strings can also be initialized like

primitives:
String name = “My name is Steven”;

 The compiler replace the “short form” with
the proper (i.e., object) initialization
statement

EECS1020 F14 (Steven C.) 3

 Strings can be joined using “+” operator
String s = “EECS” + “1020”;

 Again, this is just a short form

 Compiler replaces with proper form
String s = new String(“EECS1020”);

EECS1020 F14 (Steven C.) 4

 Indicate position within a String
 Numbered from 0 to length-1

String: EECS1020

Index: 01234567

EECS1020 F14 (Steven C.) 5

 Section 6.2.2
 Noteworthy methods:
◦ length(): returns the number of characters in String
◦ charAt(index): returns the char at the passed index
◦ substring(start, end): returns a new String

containing only the characters at the index from
start (inclusive) to end (exclusive)

EECS1020 F14 (Steven C.) 6

 Section 6.2.3
 Noteworthy methods:
◦ trim(): returns a new String with the same

characters, but without leading and trailing
whitespace

String text = “ extra space “;
output.print(text.trim()); // outputs

“extra space”

EECS1020 F14 (Steven C.) 7

 Section 6.2.4
 Noteworthy methods:
◦ equals(otherString): returns true iff the two Strings

are identical (see also
equalsIgnoreCase(otherString))
◦ indexOf(otherString): returns the index of the first

occurrence of otherString in the String object;
returns -1 if not found
◦ compareTo(otherString): (see next slide)

EECS1020 F14 (Steven C.) 8

 Assume s1 and s2 are both in lowercase
(or both uppercase)

 Assume lexicographic (i.e., dictionary)
ordering

 If s1 and s2 are identical, return value == 0
 If s1 comes before s2, return value < 0
 If s1 comes after s2, return value > 0

EECS1020 F14 (Steven C.) 9

 Case 1: s1 and s2 are identical
◦ Return: 0

 Case 2: one String starts with the other
(e.g., s1 = “Planet”, s2 = “Pl”)
◦ Return: s1.length() – s2.length()

 Case 3: there is a miss-match between s1 and
s2 at some index, k (e.g., s1 = “Planet”, s2 =
“Pluto”)
◦ Return: s1.charAt(k) – s2.charAt(k) // subtract

Unicode values

EECS1020 F14 (Steven C.) 10

 Numbers  Strings:
◦ “” + number

 Strings  Numbers:
◦ “Wrapper” classes contain methods for handling

primitive types (e.g., Integer, Double)
◦ int num = Integer.parseInt(“514”);
◦ double num = Double.parseDouble(“3.141592”);

EECS1020 F14 (Steven C.) 11

 How many times does a character appear in a
String?

◦ Use charAt() method to access characters

◦ Use a for loop to iterate over the string length

◦ Increment a count if the character is found

EECS1020 F14 (Steven C.) 12

 Task:
◦ Output the number of tokens that end with “.”

 Code:
◦ (Presented in lecture)

EECS1020 F14 (Steven C.) 13

 Lookup value in one String, replace with value
in a second String at same index
◦ Use parallel strings for lookup
 0 1 2 3 4 5 6
 Sun Mon Tue Wed Thu Fri Sat
◦ Use indexOf() method to find index of value in “top”

String
◦ Use substring() method to retrieve value from

“bottom” String

EECS1020 F14 (Steven C.) 14

 Task:
◦ Output numbers as words
◦ E.g., “123” returns “onetwothree”

 Code:
◦ (Presented in lecture)

EECS1020 F14 (Steven C.) 15

EECS1020 F14 (Steven C.) 16

 Task:
◦ Output whether or not a String is a valid postal code
◦ E.g., “M3J 1P3” returns true

 Code:
◦ (Presented in lecture)

EECS1020 F14 (Steven C.) 17

 Strings cannot be modified (no mutator
methods)

 Repeatedly creating new Strings is inefficient
 StringBuffer allows char sequence modification
 StringBuffer mutator methods:
◦ append: adds parameter to the end of the sequence
◦ insert: adds parameter to this sequence at specified

index; existing characters are shifted to the right
◦ delete: removes characters between two indexes;

existing characters are shifted to the left

EECS1020 F14 (Steven C.) 18

 Mutable like StringBuffer
 Newer than StringBuffer
 Slightly faster than StringBuffer because it is

not “synchronized”
◦ Example shown in lecture

EECS1020 F14 (Steven C.) 19

