Java By Abstraction: Chapter 6
Strings

What are Strings?

» Sequence of characters

» Non-primitive (i.e., object) data type

» Read-only objects (recreated but not
modified)

- Any “changes” are actually new objects initialized
with the new value

EECS1020 F14 (Steven C.)

The Masquerade

» Remember, Strings are objects

» Strings can be initialized like objects:
String name = new String(*“My name is Steven”);
» But Strings can also be initialized like
primitives:
String name = “My name is Steven’;
» The compiler replace the “short form” with
the proper (i.e., object) initialization
statement

EECS1020 F14 (Steven C.)

Concatenation

» Strings can be joined using “+” operator
String s = “EECS” + “10207;

» Again, this is just a short form

» Compiler replaces with proper form
String s = new String("EECS1020%);

EECS1020 F14 (Steven C.)

Character Indexing

» Indicate position within a String
» Numbered from O to length-1

String: EECS1020

Index: 01234567

EECS1020 F14 (Steven C.)

AcCcessors

» Section 6.2.2

» Noteworthy methods:
> length(): returns the number of characters in String
- charAt(/ndex): returns the char at the passed index

> substring(start, end): returns a new String
containing only the characters at the index from
start (inclusive) to end (exclusive)

EECS1020 F14 (Steven C.)

Transformers

» Section 6.2.3

» Noteworthy methods:

> trim(): returns a new String with the same
characters, but without leading and trailing
whitespace

String text = extra space ;

output.print(text.trim()); // outputs
“extra space”

EECS1020 F14 (Steven C.)

Comparators

» Section 6.2.4

» Noteworthy methods:

- equals(otherString): returns true iff the two Strings
are identical (see also
equalslgnoreCase(otherString))

- indexOf(otherString): returns the index of the first

occurrence of otherString in the String object;
returns -1 if not found

- compareTo(otherString): (see next slide)

EECS1020 F14 (Steven C.)

s1.compareTo(s2) (in general)

» Assume s/ and sZ are both in lowercase
(or both uppercase)

» Assume lexicographic (i.e., dictionary)
ordering

» If s7 and sZ2 are identical, return value ==
» If s7 comes before sZ2, return value < 0O
» If s7 comes after s2, return value > 0

EECS1020 F14 (Steven C.)

s1.compareTo(s2) (more

specifically)

» Case 1: s7 and sZ are identical
> Return: O

» Case 2: one String starts with the other
(e.g., s7 = "Planet”, s2 = “PI")
- Return: s/.length() - sZ2.length()

» Case 3: there is a miss-match between s/ and
SPZI at s)ome index, k(e.g., s7 = “Planet”, s2 =
14 uto”

> Return: s/.charAt(k) - sZ2.charAt(k) // subtract
Unicode values

EECS1020 F14 (Steven C.) 10

Strings — Numbers

» Numbers = Strings:

- "+ number

» Strings 2 Numbers:
- “Wrapper” classes contain methods for handling
primitive types (e.g., Integer, Double)
> int num = Integer.parselnt(“514");
- double num = Double.parseDouble(“3.141592%);

EECS1020 F14 (Steven C.)

11

Application: Character Frequency

» How many times does a character appear in a
String?

- Use charAt() method to access characters
- Use a for loop to iterate over the string length

> Increment a count if the character is found

EECS1020 F14 (Steven C.)

12

Exercise: SentenceCounter

» Task:
- OQutput the number of tokens that end with

» Code:

> (Presented in lecture)

EECS1020 F14 (Steven C.)

13

Application: Fixed-Size Codes

» Lookup value in one String, replace with value
in a second String at same index

- Use parallel strings for lookup
- 0 1 2 3 4 5 6

- Sun Mon Tue Wed Thu Fri Sat

- Use indexOf() method to find index of value in “top”
String

- Use substring() method to retrieve value from
“bottom” String

EECS1020 F14 (Steven C.)

14

Exercise: DigitSpeller

» Task:

> Qutput numbers as words
> E.g., “123" returns “onetwothree”

» Code:

> (Presented in lecture)

EECS1020 F14 (Steven C.)

15

Regular Expressions

CHARACTER SPECIFICATIONS

[a-m] Range. A characters between a and m, inclusive
[a-m[A-M]] Union. a through m or A through M

[abc] Set. The character a, b, or ¢

[*abc] Negation. Any character except a, b, or ¢

[a-m&&[*ck]]

Intersection. a though m but neither ¢ nor k

PREDEFINED SPECIFICATIONS

Any character

\d A digit, [0-9]

\s A whitespace character, [\t\n\x0B\f\r]

\w A word character, [a-zA-Z 0-9]

\p{Punct} f;f?ffﬁzglrog S, m f <=2 \] N (])~]
QUANTIFIERS

x? x, once or not at all

x* X, zero or more times

x+ X, one or more times

x, at least n but no more than m times

EECS1020 F14 (Steven C.)

16

Exercise: PostalCodeChecker

» Task:
> Output whether or not a String is a valid postal code

- E.g., “M3J 1P3” returns True
» Code:

> (Presented in lecture)

EECS1020 F14 (Steven C.)

17

StringBuffer and StringBuilder

» Strings cannot be modified (no mutator
methods)

» Repeatedly creating new Strings is inefficient
» StringBuffer allows char sequence modification

» StringBuffer mutator methods:

- append: adds parameter to the end of the sequence

> insert: adds parameter to this sequence at specified
index; existing characters are shifted to the right

- delete: removes characters between two indexes;
existing characters are shifted to the left

EECS1020 F14 (Steven C.)

18

StringBuilder

» Mutable like StringBuffer
» Newer than StringBuffer

» Slightly faster than StringBuffer because it is
not “synchronized”
- Example shown in lecture

EECS1020 F14 (Steven C.)

19

