
Some examples and/or figures were borrowed (with permission)
from slides prepared by Prof. H. Roumani

Programming by Delegation

 Encapsulate real-world entities in a class
◦ Class usually represents a noun (i.e., a thing)
◦ One-word class names begin with a capital letter
 E.g., First, Rectangle3, Check01
◦ Multi-word names begin each word with capital
 E.g., FirstApp, PrintStream

 Instances of a class are called objects

EECS1020 F14 (Steven C.) 2

 Characteristics are represented as attributes
◦ Attribute also usually represents a noun
◦ One-word attribute name all in lowercase
 E.g., width, height
◦ Multi-word names begin second and subsequent

words with capital
 E.g., countPositive, cardNumber
◦ Constant attribute name all in UPPER_CASE with

words separated with an underscore

EECS1020 F14 (Steven C.) 3

 Operations are represented as methods
◦ Method usually represents a verb (i.e., an action)
◦ Always followed by parentheses (even if empty)
◦ Additional data (called parameters) included in

parentheses if necessary
◦ One-word method name all in lowercase
 E.g., equals(anotherObject), round()
◦ Multi-word names begin second and subsequent

words with capital
 E.g., scale(x, y, w, h), getArea()

EECS1020 F14 (Steven C.) 4

 Assume r represents a Rectangle3 object
 Attributes of type int: width, height
 Attribute access syntax
◦ objectIdentifier.attributeName

 Examples
◦ int currentWidth = r.width;
◦ int newWidth = 8;
 r.width = newWidth ;

EECS1020 F14 (Steven C.) 5

 Assume r represents a Rectangle3 object
 Method getArea() returns area as int
 Method invokation syntax
◦ objectIdentifier.methodName(parameters)

 Examples
◦ int area = r.getArea();

EECS1020 F14 (Steven C.) 6

 Use the keyword new to instantiate (i.e.,
create) an object

 Invoke the class’s constructor method to
initialize the object’s state

 Object declaration and instantiation syntax
◦ ClassName identifier = new ClassName();

 Example
◦ Rectangle3 r = new Rectangle3();

EECS1020 F14 (Steven C.) 7

…
int width = 8;
int height = 5;
Rectangle3 r = new Rectangle3();
r.width = width;
r.height = height;
int rArea = r.getArea();
System.out.println(rArea);
…

EECS1020 F14 (Steven C.) 8

 Uses Procedural Paradigm
◦ Performs computation, not data storage

 Represent computations, not objects
 E.g., Math class
 All methods and attributes are static
◦ Can be called without first declaring an object
◦ E.g., Math.PI, Math.E, Math.round(), Math.log()

 Non-utility classes may also have some static
methods and/or attributes

EECS1020 F14 (Steven C.) 9

 Can be run from the command-line
 Starting point for a Java application
 Coordinates use of helper classes

(i.e., components)

EECS1020 F14 (Steven C.) 10

 Determine what needs to be done
 Which helper class can accomplish each task
 Abstract the details of how each is

accomplished
 Bread analogy in text (p. 56)
◦ Difficult to grow, harvest, and mill wheat, to bake

into bread
◦ Instead, coordinate with a farmer, miller, and baker

EECS1020 F14 (Steven C.) 11

 The client develops the main class
◦ Understands the big picture, the purpose of the

application
◦ Knows what each component does but not how it

does it
 The implementer develops a component
◦ Focuses only on the inner details of one component

 Client and Implementer share info on a
need-to-know basis

EECS1020 F14 (Steven C.) 12

EECS1020 F14 (Steven C.) 13

CLIENT

Interface
Interface In

te
rf

ac
e

IMPLEMENTER

Interface

 Hide implementation details from clients
 Apply to classes, methods, and/or

attributes
◦ Features with public access appear in the API and

are accessible to clients
◦ Features with private access are not in the API

and are not accessible to clients
◦ Features with protected access are in the API, but

are accessible only to other implementers
◦ Features with no specified access are not in the

API and are available only classes in the same
package (i.e., directory)

EECS1020 F14 (Steven C.) 14

 Guarantee between client and implementer
 Precondition
◦ What the client must satisfy

 Postcondition
◦ What the implementer must deliver

 Liability
◦ Pre. is satisfied and post. is satisfied Good
◦ Pre. is satisfied and post. is not satisfied

Implementer at fault
◦ Pre. is not satisfied Client at fault
◦ If no precondition stated, then client need not satisfy

anything

EECS1020 F14 (Steven C.) 15

 Methods in the Java specify contracts as
follows:
◦ Precondition is always true unless stated otherwise
◦ Postcondition is specified under Returns and Throws

 Example:

double squareRoot(double x)
Returns the square root of the given argument.

Parameters:

x - an argument.
Returns:

the positive square root of x.
Throws:

an exception if x < 0.

16 EECS1020 F14 (Steven C.)

 Contains over 3000
components

 Class details
contained in TYPE
API and Java API

 Organized into
packages and
subpackages

 Examples
◦ type.lib.Rectangle3
◦ java.util.Scanner

java.awt Provides support for drawing graphics.
AWT = Abstract Windowing Toolkit

java.beans Provide support for Java Beans.
java.io Provides support for file and other I/O operations.

java.lang Provides the fundamental Java classes.
This package is auto-imported by the compiler.

java.math Provides support for arbitrary-precision arithmetic
java.net Provides support for network access.

java.rmi Provides support for RMI.
RMI = Remote Method Invocation

java.security Provides support for the security framework.

java.sql
Provides support for databases access over JDBC
JDBC = Java Database Connectivity,
SQL = Structured Query Language

java.text Provides formatting for text, dates, and numbers.

java.util Miscellaneous utility classes including JCF.
JCF = Java Collection Framework

javax.crypto Provides support for cryptographic operations.

javax.servlet Provides support for servlet and JSP development.
JSP = Java Server Pages

javax.swing Provides support for GUI development.
GUI = Graphical User Interface

javax.xml Provides support for XML processing.
XML = eXtensible Markup Language 17 EECS1020 F14 (Steven C.)

 Indicate use of Java Standard Library (other than
java.lang.*) or other Java library (e.g., TYPE)

 Import one or all classes in a subpackage (using *)
 Import statement syntax
◦ import package.subpackage.class; // imports a single

class
◦ import package.subpackage.*; // imports all classes in

subpackage
 Example
◦ import java.util.Scanner; // imports only the Scanner

class
◦ import type.lib.*; // imports all classes in the lib

subpackage

EECS1020 F14 (Steven C.) 18

 import java.util.Scanner; // place at top of file
◦ Captures user input from the terminal
◦ Parses lines, words, and primitive data types

 import java.io.PrintStream; // place at top of file
◦ Outputs text to the terminal
◦ Formats output
 Field width
 Specify number of decimal places

EECS1020 F14 (Steven C.) 19

 Scanner input = new Scanner(System.in);
◦ Tokenizes input (i.e., separates using whitespace)

EECS1020 F14 (Steven C.) 20

 next()
◦ Returns the next word

 nextLine()
◦ Returns the next line

 nextBoolean()
 nextChar()

 nextInt()
◦ Parses next token as int

 nextDouble()
◦ Parses next token as double

 nextLong()
 nextFloat()

 PrintStream output = new
PrintStream(System.out);

 print(variable) or print(“string literal”)
◦ Outputs text to the terminal

 println(variable) or println(“string literal”)
◦ Outputs text to the terminal and appends a newline

character
 printf(“format string”, variable...)
◦ Outputs formatted text to the terminal

EECS1020 F14 (Steven C.) 21

 Format string syntax (see p. 108)
◦ %[flags][width][.precision]conversion
◦ flag: , or 0
◦ width: field width (text: left aligned; digits: right

aligned)
◦ precision: number of decimals
◦ conversion: d (integer), f (real), s (text), or n

(newline)
 Can also include non-format text
 Example
◦ double x = 15.753;
 output.printf(“Cost: %.2f”, x); // outputs Cost: 15.75

EECS1020 F14 (Steven C.) 22

 See page 70

 Template for all of your 1020 Java programs

 Memorize it

EECS1020 F14 (Steven C.) 23

