Java By Abstraction: Chapter 2

Programming by Delegation




Object Oriented Programming (OOP)

» Encapsulate real-world entities in a class
> Class usually represents a noun (i.e., a thing)
- One-word class names begin with a capital letter
- E.qg., First, Rectangle3, CheckO]1
> Multi-word names begin each word with capital
- E.g., FirstApp, PrintStream

» Instances of a class are called objects

EECS1020 F14 (Steven C.)



Object Oriented Programming (OOP)

» Characteristics are represented as attributes

- Attribute also usually represents a noun

- One-word attribute name all in lowercase
- E.g., width, height

- Multi-word names begin second and subsequent
words with capital
- E.g., countPositive, cardNumber

- Constant attribute name all in UPPER_CASE with
words separated with an underscore

EECS1020 F14 (Steven C.)



Object Oriented Programming (OOP)

» Operations are represented as methods
- Method usually represents a verb (i.e., an action)
- Always followed by parentheses (even if empty)

- Additional data (called parameters) included in
parentheses if necessary

> One-word method name all in lowercase
- E.g., equals(anotherObject), round()

- Multi-word names begin second and subsequent
words with capital

- E.g., scale(x, y, w, h), getAreal()

EECS1020 F14 (Steven C.)



Accessing Attributes

» Assume r represents a Rectangle3 object
» Attributes of type int: width, height

» Attribute access syntax
- objectldentifier.attributeName

» Examples
> int currentWidth = r.width;
> int newWidth = 8;
r.width = newWidth ;

EECS1020 F14 (Steven C.)



Invoking a Method

» Assume r represents a Rectangle3 object
» Method getArea() returns area as int

» Method invokation syntax
- objectldentifier.methodName(parameters)

» Examples
> int area = r.getArea();

EECS1020 F14 (Steven C.)



Instantiating Objects

» Use the keyword new to instantiate (i.e.,
create) an object

» Invoke the class’s constructor method to
initialize the object’s state

» Object declaration and instantiation syntax
o ClassName identifier = new ClassName();
» Example

- Rectangle3 r = new Rectangle3();

EECS1020 F14 (Steven C.)



Using Objects (Example)

int width = 8;

int height = 5;

Rectangle3 r = new Rectangle3();
r.width = width;

r.height = height;

int rArea = r.getArea();
System.out.println(rArea);

EECS1020 F14 (Steven C.)



Utility Classes

» Uses Procedural Paradigm
- Performs computation, not data storage

» Represent computations, not objects
» E.g., Math class

» All methods and attributes are static

- Can be called without first declaring an object
- E.g., Math.PIl, Math.E, Math.round(), Math.log()

» Non-utility classes may also have some static
methods and/or attributes

EECS1020 F14 (Steven C.)



Main Classes

» Can be run from the command-line
» Starting point for a Java application

» Coordinates use of helper classes
(i.e., components)

EECS1020 F14 (Steven C.)

10



Delegation by Abstraction

» Determine what needs to be done

» Which hel

» Abstract t
accomplis

» Bread ana

ner class can accomplish each task

ne details of how each is
ned

ogy in text (p. 56)

- Difficult to grow, harvest, and mill wheat, to bake
into bread

- Instead, coordinate with a farmer, miller, and baker

EECS1020 F14 (Steven C.)

11



The Client View

» The client develops the main class

- Understands the big picture, the purpose of the
application

- Knows what each component does but not how it
does it

» The implementer develops a component
- Focuses only on the inner details of one component
» Client and Implementer share info on a
need-to-know basis

EECS1020 F14 (Steven C.)

12



The Client View

CLIENT
Interface
fo IMPLEMENTER
-

9JBJI9lUu|

Interface

EECS1020 F14 (Steven C.)

13



Access Modifiers

» Hide implementation details from clients
» Apply to classes, methods, and/or

attributes
> Features wit
are accessib

o Features wit
and are not

o Features wit
are accessib

> Features wit

n public access appear in the APl and
e to clients

N private access are not in the API
accessible to clients

N protected access are in the API, but
e only to other implementers

n no specified access are not in the

APl and are available only classes in the same

package (i.e., directory)

EECS1020 F14 (Steven C.)

14



Contracts

» Guarantee between client and implementer

» Precondition
- What the client must satisfy

» Postcondition
- What the implementer must deliver
» Liability
> Pre. is satisfied and post. is satisfied 2> Good

> Pre. is satisfied and post. is not satisfied =
Implementer at fault

> Pre. is not satisfied = Client at fault

- If no precondition stated, then client need not satisfy
anything

EECS1020 F14 (Steven C.) 15



Contracts in Java

» Methods in the Java specify contracts as
follows:

> Precondition is always true unless stated otherwise
- Postcondition is specified under Returns and Throws
» Example:

double squareRoot(double Xx)
Returns the square root of the given argument.

Parameters:
X - anargument.
Returns:
the positive square root of Xx.
Throws:
an exception if x < O.

16



TYPE and Java Standard Library

» Contains over 3000
components

» Class details
contained in TYPE
API and Java API

» Organized into
packages and
subpackages

» Examples

> type.lib.Rectangle3
> java.util.Scanner

jJava.

jJava.

Java.
Java.

Java.

Java.
Java.

Java.

Java.

java.

Java.

awt
beans
io
lang

math

net
rmi

security

sql

text

util

Javax.crypto

jJavax.servlet

Javax.swing

Javax.xml

Provides support for drawing graphics.
AWT = Abstract Windowing Toolkit

Provide support for Java Beans.

Provides support for file and other 1/0O operations.

Provides the fundamental Java classes.
This package is auto-imported by the compiler.

Provides support for arbitrary-precision arithmetic
Provides support for network access.

Provides support for RMI.
RMI = Remote Method Invocation

Provides support for the security framework.

Provides support for databases access over JDBC
JDBC = Java Database Connectivity,
SQL = Structured Query Language

Provides formatting for text, dates, and numbers.

Miscellaneous utility classes including JCF.
JCF = Java Collection Framework

Provides support for cryptographic operations.

Provides support for servlet and JSP development.
JSP = Java Server Pages

Provides support for GUI development.
GUI = Graphical User Interface

Provides support for XML processing.

XML = eXtensible Markup Language 17



Importing Packages and Classes

» Indicate use of Java Standard Library (other than
java.lang.*) or other Java library (e.g., TYPE)

» Import one or all classes in a subpackage (using *)

» Import statement syntax

: irlnport package.subpackage.class, |/ imports a single
class

o import package.subpackage.*; |/ imports all classes in
subpackage
» Example

o irlnportjava.utiI.Scanner; /] imports only the Scanner
class

> import type.lib.*; // imports all classes in the lib
subpackage

EECS1020 F14 (Steven C.) 18



Ready-Made Input and Output

» import java.util.Scanner; // place at top of file
- Captures user input from the terminal
- Parses lines, words, and primitive data types
» import java.io.PrintStream; // place at top of file
> Qutputs text to the terminal
> Formats output

- Field width
- Specify number of decimal places

EECS1020 F14 (Steven C.) 19



Parsing Input

» Scanner input = new Scanner(System.in);
- Tokenizes input (i.e., separates using whitespace)

» nhext() » hextIint()

> Returns the next word > Parses next token as int
» nextLine() » nextDouble()

> Returns the next line > Parses next token as double
» nextBoolean() » nextLong()

nextFloat()

nextChar()

v
v

EECS1020 F14 (Steven C.)

20



Formatting Output

» PrintStream output = new
PrintStream(System.out);

» print(variable) or print(“string literal’)
> Qutputs text to the terminal
» printin(variable) or printin(“string literal’)

> Qutputs text to the terminal and appends a newline
character

v printf(“format string’, variable...)
- Qutputs formatted text to the terminal

EECS1020 F14 (Steven C.) 21



Formatting Output

» Format string syntax (see p. 108)
- %[flags][width][.precision]conversion

- flag: , or O
- width: field width (text: left aligned; digits: right
aligned)
> precision: number of decimals
- conversion: d (integer), f (real), s (text), or n
(newline)
» Can also include non-format text
» Example

- double x = 15.753;

__output.printf(“Cost: %.2f", x); // outputs Cost: 15.75

EECS1020 F14 (Steven C.) 22



Program Template

» See page 70

» Template for all of your 1020 Java programs

» Memorize It

EECS1020 F14 (Steven C.)

23



