
Some examples and/or figures were borrowed (with permission) 
from slides prepared by Prof. H. Roumani 

Programming by Delegation 



 Encapsulate real-world entities in a class 
◦ Class usually represents a noun (i.e., a thing) 
◦ One-word class names begin with a capital letter 
 E.g., First, Rectangle3, Check01 
◦ Multi-word names begin each word with capital 
 E.g., FirstApp, PrintStream 

 Instances of a class are called objects 
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 Characteristics are represented as attributes 
◦ Attribute also usually represents a noun 
◦ One-word attribute name all in lowercase 
 E.g., width, height 
◦ Multi-word names begin second and subsequent 

words with capital 
 E.g., countPositive, cardNumber 
◦ Constant attribute name all in UPPER_CASE with 

words separated with an underscore 
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 Operations are represented as methods 
◦ Method usually represents a verb (i.e., an action) 
◦ Always followed by parentheses (even if empty) 
◦ Additional data (called parameters) included in 

parentheses if necessary 
◦ One-word method name all in lowercase 
 E.g., equals(anotherObject), round() 
◦ Multi-word names begin second and subsequent 

words with capital 
 E.g., scale(x, y, w, h), getArea() 
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 Assume r represents a Rectangle3 object 
 Attributes of type int: width, height 
 Attribute access syntax 
◦ objectIdentifier.attributeName 

 Examples 
◦ int currentWidth = r.width; 
◦ int newWidth = 8; 
 r.width = newWidth ; 
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 Assume r represents a Rectangle3 object 
 Method getArea() returns area as int 
 Method invokation syntax 
◦ objectIdentifier.methodName(parameters) 

 Examples 
◦ int area = r.getArea(); 
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 Use the keyword new to instantiate (i.e., 
create) an object 

 Invoke the class’s constructor method to 
initialize the object’s state 

 Object declaration and instantiation syntax 
◦ ClassName identifier = new ClassName(); 

 Example 
◦ Rectangle3 r = new Rectangle3(); 
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… 
int width = 8; 
int height = 5; 
Rectangle3 r = new Rectangle3(); 
r.width = width; 
r.height = height; 
int rArea = r.getArea(); 
System.out.println(rArea); 
… 
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 Uses Procedural Paradigm 
◦ Performs computation, not data storage 

 Represent computations, not objects 
 E.g., Math class 
 All methods and attributes are static 
◦ Can be called without first declaring an object 
◦ E.g., Math.PI, Math.E, Math.round(), Math.log() 

 Non-utility classes may also have some static 
methods and/or attributes 
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 Can be run from the command-line 
 Starting point for a Java application 
 Coordinates use of helper classes 

(i.e., components) 
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 Determine what needs to be done 
 Which helper class can accomplish each task 
 Abstract the details of how each is 

accomplished 
 Bread analogy in text (p. 56) 
◦ Difficult to grow, harvest, and mill wheat, to bake 

into bread 
◦ Instead, coordinate with a farmer, miller, and baker 
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 The client develops the main class 
◦ Understands the big picture, the purpose of the 

application 
◦ Knows what each component does but not how it 

does it 
 The implementer develops a component 
◦ Focuses only on the inner details of one component 

 Client and Implementer share info on a 
need-to-know basis 
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 Hide implementation details from clients 
 Apply to classes, methods, and/or 

attributes 
◦ Features with public access appear in the API and 

are accessible to clients 
◦ Features with private access are not in the API 

and are not accessible to clients 
◦ Features with protected access are in the API, but 

are accessible only to other implementers 
◦ Features with no specified access are not in the 

API and are available only classes in the same 
package (i.e., directory) 
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 Guarantee between client and implementer 
 Precondition 
◦ What the client must satisfy 

 Postcondition 
◦ What the implementer must deliver 

 Liability 
◦ Pre. is satisfied and post. is satisfied  Good 
◦ Pre. is satisfied and post. is not satisfied  

Implementer at fault 
◦ Pre. is not satisfied  Client at fault 
◦ If no precondition stated, then client need not satisfy 

anything 
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 Methods in the Java specify contracts as 
follows: 
◦ Precondition is always true unless stated otherwise 
◦ Postcondition is specified under Returns and Throws 

 Example: 

 

double squareRoot(double x) 
Returns the square root of the given argument.  
 
Parameters: 

x - an argument. 
Returns: 

the positive square root of x. 
Throws: 

an exception if x < 0. 

16 EECS1020 F14 (Steven C.) 



 Contains over 3000 
components 

 Class details 
contained in TYPE 
API and Java API 

 Organized into 
packages and 
subpackages 

 Examples 
◦ type.lib.Rectangle3 
◦ java.util.Scanner 

java.awt Provides support for drawing graphics. 
AWT = Abstract Windowing Toolkit 

java.beans Provide support for Java Beans. 
java.io Provides support for file and other I/O operations. 

java.lang Provides the fundamental Java classes. 
This package is auto-imported by the compiler. 

java.math Provides support for arbitrary-precision arithmetic 
java.net Provides support for network access. 

java.rmi Provides support for RMI. 
RMI = Remote Method Invocation 

java.security Provides support for the security framework. 

java.sql 
Provides support for databases access over JDBC 
JDBC = Java Database Connectivity,  
SQL = Structured Query Language 

java.text Provides formatting for text, dates, and numbers. 

java.util Miscellaneous utility classes including JCF. 
JCF = Java Collection Framework 

javax.crypto Provides support for cryptographic operations. 

javax.servlet Provides support for servlet and JSP development. 
JSP = Java Server Pages 

javax.swing Provides support for GUI development. 
GUI = Graphical User Interface 

javax.xml Provides support for XML processing. 
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 Indicate use of Java Standard Library (other than 
java.lang.*) or other Java library (e.g., TYPE) 

 Import one or all classes in a subpackage (using *) 
 Import statement syntax 
◦ import package.subpackage.class;  // imports a single 

class 
◦ import package.subpackage.*;  // imports all classes in 

subpackage 
 Example 
◦ import java.util.Scanner;  // imports only the Scanner 

class 
◦ import type.lib.*;  // imports all classes in the lib 

subpackage 
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 import java.util.Scanner;  // place at top of file 
◦ Captures user input from the terminal 
◦ Parses lines, words, and primitive data types 

 import java.io.PrintStream; // place at top of file 
◦ Outputs text to the terminal 
◦ Formats output 
 Field width 
 Specify number of decimal places 

EECS1020 F14 (Steven C.) 19 



 Scanner input = new Scanner(System.in); 
◦ Tokenizes input (i.e., separates using whitespace) 
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 next() 
◦ Returns the next word 

 nextLine() 
◦ Returns the next line 

 nextBoolean() 
 nextChar() 

 nextInt() 
◦ Parses next token as int 

 nextDouble() 
◦ Parses next token as double 

 nextLong() 
 nextFloat() 



 PrintStream output = new 
PrintStream(System.out); 
 

 print(variable)  or print(“string literal”) 
◦ Outputs text to the terminal 

 println(variable)  or println(“string literal”) 
◦ Outputs text to the terminal and appends a newline 

character 
 printf(“format string”, variable...) 
◦ Outputs formatted text to the terminal 
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 Format string syntax (see p. 108) 
◦ %[flags][width][.precision]conversion 
◦ flag: , or 0 
◦ width: field width (text: left aligned; digits: right 

aligned) 
◦ precision: number of decimals 
◦ conversion: d (integer), f (real), s (text), or n 

(newline) 
 Can also include non-format text 
 Example 
◦ double x = 15.753; 
 output.printf(“Cost: %.2f”, x); // outputs Cost: 15.75 
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 See page 70 
 

 Template for all of your 1020 Java programs 
 

 Memorize it 
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