Analysis of Algorithms

- •Measures of efficiency:
 - -Running time
 - –Space used
 - others
- •Efficiency as a function of input size (NOT value!)
 - –Number of data elements (numbers, points)
 - -Number of bits in an input number
 - e.g. Find the factors of a number n,
 - Determine if an integer n is prime

Model: What machine do we assume? Intel? Motorola? P3? P4?

The RAM model

- Generic abstraction of sequential computers
- RAM assumptions:
 - Instructions (each taking constant time), we usually choose one type of instruction as a **characteristic** operation that is counted:
 - Arithmetic (add, subtract, multiply, etc.)
 - Data movement (assign)
 - Control (branch, subroutine call, return)
 - Comparison
 - Data types integers, characters, and floats
 - Ignores memory hierarchy, network!

Importance of input size

Consider the problem of factoring an integer n

Note: Public key cryptosystems depend critically on hardness of factoring - if you have a fast algorithm to factor integers, most e-commerce sites will become insecure!!

Trivial algorithm: Divide by 1,2,..., n/2 (n/2 divisions)

aside: think of an improved algorithm

Always evaluate running time as a function of the SIZE of the input (e.g. in the number of bits or the number of ints, or number of floats, or number of chars,...)

Analysis of Find-max

 COUNT the number of cycles (running time) as a function of the input size

Find-max (A)
1. max ← A[1]
2. for j ← 2 to length(A)
3. do if (max < A[j])
4. max ← A[j]
5. return max

cost	times
C_1	1
C_2	n
C ₃	n-1
C_4	0≤k≤n−1
C ₅	1

Running time (upper bound): $c_1 + c_5 - c_3 - c_4 + (c_2 + c_3 + c_4)n$ Running time (lower bound): $c_1 + c_5 - c_3 - c_4 + (c_2 + c_3)n$ Q: What are the values of c_i ?

Best/Worst/Average Case Analysis

- Best case: A[1] is the largest element.
- Worst case: elements are sorted in increasing order
- Average case: ? Depends on the input characteristics

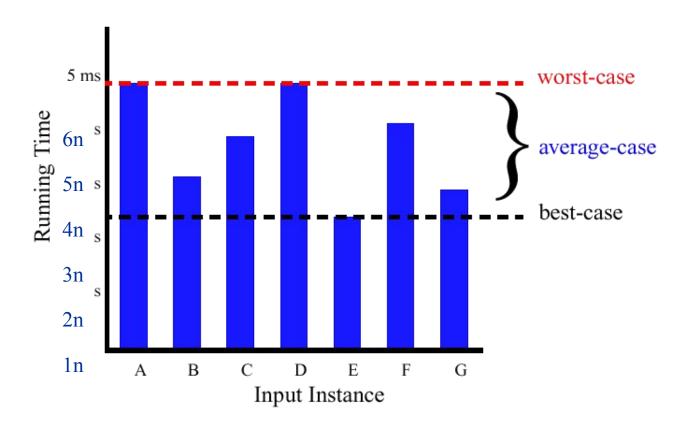
Q: What do we use?

A: Worst case or Average-case is usually used:

- Worst-case is an upper-bound; in certain application domains (e.g., air traffic control, surgery) knowing the worst-case time complexity is of crucial importance
- Finding the average case can be very difficult; needs knowledge of input distribution.
- Best-case is not very useful.

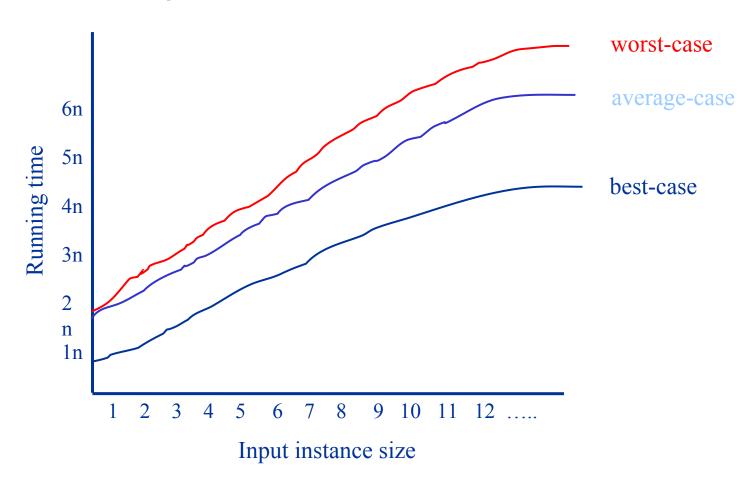
Best/Worst/Average Case (2)

- For a specific size of input *n*, investigate running times for different input instances:



Best/Worst/Average Case (3)

– For inputs of all sizes:



Asymptotic notation: Intuition

Running time bound: $c_1 + c_5 - c_3 - c_4 + (c_2 + c_3 + c_4)n$ What are the values of c_i ? machine-dependent

A simpler expression: $c_5 + c_6 n$ [still complex].

Q: Can we throw away the lower order terms?

A: Yes, if we do not worry about constants, and there exist constants c_7 , c_8 such that c_7 n $\leq c_5 + c_6$ n $\leq c_8$ n, then we say that the running time is $\theta(n)$.

Need some mathematics to formalize this (LATER).

Q: Are we interested in small n or large?

A: Assume interested in large n - cleaner theory, usually realistic. Remember the assumption when interpreting results!

Asymptotic notation - continued

Will do the relevant math later. For now, the intuition is:

- 1. O() is used for upper bounds "grows slower than"
- 2. Ω () used for lower bounds "grows faster than"
- Θ() used for denoting matching upper and lower bounds. "grows as fast as"
 These are bounds on running time, not for the problem

The thumbrules for getting the running time are

- 1. Throw away all terms other than the most significant one -- Calculus may be needed e.g.: which is greater: n log n or n^{1.001}?
- 2. Throw away the constant factor.
- 3. The expression is $\Theta()$ of whatever's left. Asymptotic optimality expression inside $\Theta()$ best possible.

A Harder Problem

INPUT: A[1..n] - an array of integers, k, 1 ≤k ≤length(A)

OUTPUT: an element m of A such that m is the kth largest element in A.

Think for a minute

Brute Force: Find the maximum, remove it. Repeat k-1 times. Find maximum.

Q: How good is this algorithm?

A: Depends on k! Can show that the running time is $\Theta(nk)$. If k=1, asymptotically optimal.

Also true for any constant k.

If k = log n, running time is $\Theta(n log n)$. Is this good? If k = n/2 (MEDIAN), running time is $\Theta(n^2)$. Definitely bad! Can sort in O(n log n)!

Q: Is there a better algorithm? YES!

Analysis of Insertion Sort

Let's compute the **running time** as a function of the **input size**

```
for j←2 to n
  do key←A[j]
    Insert A[j] into the sorted
    sequence A[1..j-1]
    i←j-1
    while i>0 and A[i]>key
    do A[i+1]←A[i]
    i ← i-1
    A[i+1] ← key
```

```
      cost
      times

      C_1
      n

      C_2
      n-1

      n-1
      n-1

      C_3
      n-1

      C_4
      \sum_{j=2}^{n} t_j (t_j - 1)

      C_5
      \sum_{j=2}^{n} (t_j - 1)

      C_6
      n-1
```

Analysis of Insertion Sort - contd

- **Best case**: elements already sorted $\rightarrow t_j=1$, running time = f(n), i.e., *linear* time.
- Worst case: elements are sorted in inverse order $\rightarrow t_j = j$, running time = $f(n^2)$, i.e., quadratic time
- Average case: $t_j = j/2$, running time = $f(n^2)$, i.e., quadratic time
- We analyzed insertion sort, and it has worst case running time $An^2 + Bn + C$, where $A = (c_5 + c_6 + c_7)/2$ etc.
- Q1: How useful are the details in this result?
- Q2: How can we simplify the expression?

Back to asymptotics...

We will now look more formally at the process of simplifying running times and other measures of complexity.

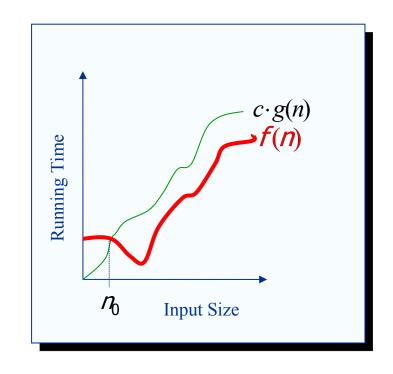
11/17/2014 40

Asymptotic analysis - details

- Goal: to simplify analysis of running time by getting rid of "details", which may be affected by specific implementation and hardware
 - like "rounding": 1,000,001 » 1,000,000
 - $-3n^2 \gg n^2$
- Capturing the essence: how the running time of an algorithm increases with the size of the input in the limit.
 - Asymptotically more efficient algorithms are best for all but small inputs

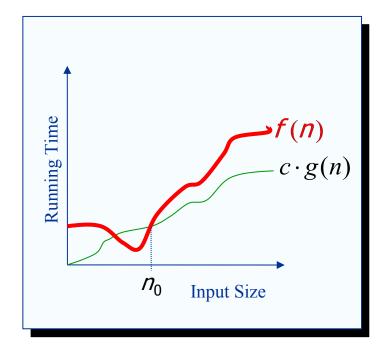
Asymptotic notation

- The "big-Oh" O-Notation
 - asymptotic upper bound
 - $f(n) \in O(g(n))$, if there exists constants c and n_0 , s.t. $f(n) \le$ c g(n) for $n \ge n_0$
 - f(n) and g(n) are functions over non-negative integers
- Used for worst-case analysis



Asymptotic notation - contd

- The "big-Omega" Ω -Notation
 - asymptotic lower bound
 - f(n) ∈ Ω(g(n)) if there exists constants c and n_0 , s.t. **c** g(n) ≤ f(n) for $n ≥ n_0$
- Used to describe best-case running times or lower bounds of algorithmic problems
 - E.g., lower-bound of searching in an unsorted array is $\Omega(n)$.



Asymptotic notation - contd

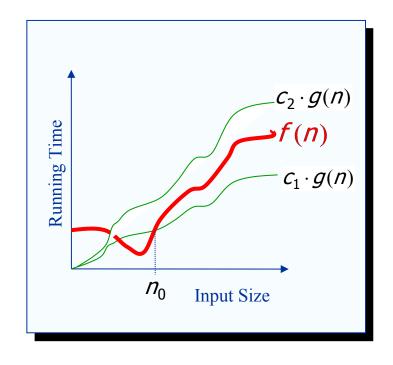
 Simple Rule: Drop lower order terms and constant factors.

- $-50 n \log n \in O(n \log n)$
- $-7n 3 \in O(n)$
- $-8n^2 \log n + 5n^2 + n \in O(n^2 \log n)$

• Note: Even though 50 $n \log n \in O(n^5)$, we usually try to express a O() expression using as small an order as possible

Asymptotic notation - contd

- The "big-Theta" Θ–Notation
 - asymptoticly tight bound
 - f(n) ∈ $\Theta(g(n))$ if there exists constants c_1 , c_2 , and n_0 , s.t. c_1 $g(n) \le f(n) \le c_2$ g(n) for $n \ge n_0$
- $f(n) \in \Theta(g(n))$ if and only if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$
- O(f(n)) is often misused instead of $\Theta(f(n))$



Asymptotic Notation - contd

- Two more asymptotic notations
 - 'Little-Oh' notation f(n)=o(g(n)) non-tight analogue of Big-Oh
 - For every c, there should exist n_0 , s.t. $\mathbf{f(n)} \leq \mathbf{c}$ $\mathbf{g(n)}$ for $n \geq n_0$
 - Used for **comparisons** of running times. If $f(n) \in o(g(n))$, it is said that g(n) dominates f(n).
 - More useful defn: (uses calculus) $\begin{array}{c}
 f(n) \\
 \lim \\
 n \to \infty \\
 g(n)
 \end{array}$
 - 'Little-omega' notation $f(n) \in \omega(g(n))$ non-tight analogue of Big-Omega

Asymptotic Notation - contd

(VERY CRUDE) Analogy with real numbers

$$-f(n) = O(g(n)) \qquad \cong \qquad f \leq g$$

$$-f(n) = \Omega(g(n)) \qquad \cong \qquad f \geq g$$

$$-f(n) = \Theta(g(n)) \qquad \cong \qquad f = g$$

$$-f(n) = o(g(n)) \qquad \cong \qquad f < g$$

$$-f(n) = \omega(g(n)) \qquad \cong \qquad f > g$$

• Abuse of notation: f(n) = O(g(n)) actually means $f(n) \hat{I} O(g(n))$.

Asymptotic Notation - contd

Common uses:

 $\Theta(1)$ – constant. $n^{\Theta(1)}$ – polynomial $2^{\Theta(n)}$ – exponential

Be careful!

$$n^{\Theta(1)} \neq \Theta(n^1)$$

$$2^{\Theta(n)} \neq \Theta(2^n)$$

- When is asymptotic analysis useful?
- When is it NOT useful?

Many, many abuses of asymptotic notation in Computer Science literature.

Lesson: Always remember the implicit assumptions...

Comparison of running times

Running	Maximum problem size (n)			
Time	1 second	1 minute	1 hour	
400 <i>n</i>	2500	150000	9000000	
20 <i>n</i> log <i>n</i>	4096	166666	7826087	
2 <i>n</i> ²	707	5477	42426	
n ⁴	31	88	244	
2 ⁿ	19	25	31	

Classifying functions

T (n)	10	100	1,000	10,000
log n	3	6	9	13
$n^{1/2}$	3	10	31	100
n	10	100	1,000	10,000
n log n	30	600	9,000	130,000
n ²	100	10,000	106	108
n ³	1,000	106	109	1012
2 n	1,024	10^{30}	10300	103000

Logarithmic functions

- $log_{10}n = # digits to write n$
- $log_2 n = \#$ bits to write n = 3.32 $log_{10} n$
- $log(n^{1000}) = 1000 log(n)$

Differ only by a multiplicative constant.

Poly Logarithmic (a.k.a. polylog)

$$(\log n)^5 = \log^5 n$$

Crucial asymptotic facts

 $\label{eq:logarithmic} \mbox{Logarithmic} << \mbox{Polynomial} \\ \mbox{log1000 n} << \mbox{$n^{0.001}$ For sufficiently large n}$

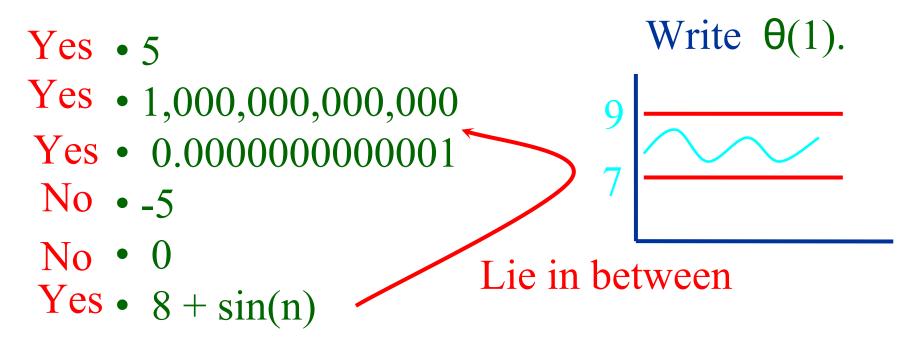
Linear << Quadratic $10000 \, n << 0.0001 \, n^2$ For sufficiently large n

Polynomial << Exponential $n^{1000} << 2^{0.001\,n} \, \text{For sufficiently large n}$

11/17/2014 52

Are constant functions constant?

The running time of the algorithm is a "Constant": It does not depend **significantly** on the size of the input.



Polynomial functions

Quadratic

- n^2
- $0.001 n^2$
- 1000 n²

Lie in between

• $5n^2 + 3000n + 2\log n$

Polynomial

- nc
- $n^{0.0001}$
- n¹⁰⁰⁰⁰
- $\bullet 5n^2 + 8n + 2\log n$
- $5n^2 \log n$
- 5n^{2.5}

Lie in between

Exponential functions

- 2n
- 20.0001 n
- 210000 n

$$\bullet$$
 8n = 2^{3n}

$$2^{n}/n^{100} > 2^{0.5n}$$

•
$$2^{n}$$
 • n^{100} < 2^{2n}

$$2^{0.5n} > n^{100}$$
 $2^{n} = 2^{0.5n} \cdot 2^{0.5n} > n^{100} \cdot 2^{0.5n}$
 $2^{n} / n^{100} > 2^{0.5n}$

Proving asymptotic expressions

Use definitions!

e.g.
$$f(n) = 3n^2 + 7n + 8 = \theta(n^2)$$

 $f(n) \in \Theta(g(n))$ if there exists constants c_1 , c_2 , and n_0 , $s.t.$
 $c_1 g(n) \le f(n) \le c_2 g(n)$ for $n \ge n_0$

Here $g(n) = n^2$

One direction $(f(n) = \Omega(g(n)))$ is easy $c_1 g(n) \le f(n)$ holds for $c_1 = 3$ and $n \ge 0$

The other direction (f(n) = O(g(n))) needs more care $f(n) \le c_2 g(n)$ holds for $c_2 = 18$ and $n \ge 1$ (CHECK!)

So
$$n_0 = 1$$

Proving asymptotic expressions - 2

Caveats!

- 1. constants c_1 , c_2 MUST BE POSITIVE.
- 2. Could have chosen $c_2 = 3 + \varepsilon$ for any $\varepsilon > 0$. WHY?
- -- because $7n + 8 \le \epsilon n^2$ for $n \ge n_0$ for some sufficiently large n_0 . Usually, the smaller the ϵ you choose, the harder it is to find n_0 . So choosing a large ϵ is easier.

3. Order of quantifiers

$$\exists \mathbf{c}_1 \ \mathbf{c}_2 \ \exists \mathbf{n}_0 \ \forall \ \mathbf{n} \ge \mathbf{n}_{0,} \ \mathbf{c}_1 \mathbf{g}(\mathbf{n}) \le \mathbf{f}(\mathbf{n}) \le \mathbf{c}_2 \mathbf{g}(\mathbf{n})$$

VS

$$\exists \mathbf{n}_0 \ \forall \ \mathbf{n} \geq \mathbf{n}_0 \ \exists \mathbf{c}_1 \ \mathbf{c}_2 \ \mathbf{c}_1 \mathbf{g}(\mathbf{n}) \leq \mathbf{f}(\mathbf{n}) \leq \mathbf{c}_2 \mathbf{g}(\mathbf{n})$$

-- allows a different c_1 and c_2 for each n. Can choose $c_2 = 1/n!!$ So we can "prove" $n^3 = \Theta(n^2)$.

Why polynomial vs exponential?

Philosophical/Mathematical reason - polynomials have different properties, grow much slower; mathematically natural distinction.

Practical reasons

- 1. almost every algorithm ever designed and every algorithm considered practical are very low degree polynomials with reasonable constants.
- 2. a large class of natural, practical problems seem to allow only exponential time algorithms. Most experts believe that there do not exist any polynomial time algorithms for any of these.

11/17/2014 58

Important thumbrules for sums

"addition made easy" - Jeff Edmonds.

"Theta of last term"

Geometric like:
$$f(i) = 2^{\Omega(i)} \Rightarrow \sum_{i=1}^{n} f(i) = \Theta(f(n))$$

n

no of terms x last term

Arithmetic like: i.f(i) = i
$$\Theta(1) \Rightarrow \sum_{i=1}^{\infty} f(i) = \Theta(nf(n))$$

Harmonic:
$$f(i) = 1/i \Rightarrow \sum_{i=1}^{n} f(i) = \Theta(\log n)$$

"Theta of first term"

Bounded tail: i.f(i) =
$$1/i\Theta(1) \Rightarrow \sum_{i=1}^{\infty} f(i) = \Theta(1)$$

Use as thmbrules only