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Recursion
Today: 
• Ch 8.1 Applications of Recurrence 

relations
• Ch 8.2 Solving Recurrence relations
• Ch 8.3 Divide and conquer algorithms
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Applications of Recurrence relations
The Tower of Hanoi puzzle:

• Move all but the bottom disk to peg 2
• Move bottom disk to peg 3
• Move all remaining disk to peg 3
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Applications of Recurrence relations
The Tower of Hanoi puzzle:
• Move all but the bottom disk to peg 2
• Move bottom disk to peg 3
• Move all remaining disk to peg 3

Hn = number of moves needed for the n-disk 
problem

Hn = 2Hn-1 +1

Unroll the recursion and prove by induction



12/1/2014 5

Applications of Recurrence relations
Number of bit strings without 2 consecutive 0's:
• must end in 1 or 10

an = an-1 + an-2

Same as Fibonacci but a1 = 2 
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Applications of Recurrence relations
Dynamic programming algorithms:

    Counting the number of paths in a rectangular 
lattice if you can only go right or down.
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Solving Recurrence relations
General soln for linear, homogenous equations 

of order 2:

Put an = rn

So the Fibonacci recurrence yields
r2 = r + 1
This has solutions r1, r2. The solution of the 

Fibonacci recurrence relation is 
an =  1r1

n + 2r2
n. 

1, 2  must be computed from first two values.
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Solving Recurrence relations
Can be extended to higher order equations,
non-homogenous equations.
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Divide and Conquer algorithms
Example 1: Multiplication of 2 n-bit numbers

Example 2: Merge sort 

Example 3:
Finding maximum and minimum of n numbers

Example 4:  Binary Search 
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Divide and Conquer algorithms
Example 1: Multiplication of 2 n-bit numbers
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Multiplication of two n-bit numbers

• X = 
• Y = 

• X = a 2n/2 + b     Y = c 2n/2 + d 

• XY = ac 2n + (ad+bc) 2n/2 + bd 

a b
c d

MULT(X,Y):

 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 RETURN 

   MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d)
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Time complexity of MULT
• T(n) = time taken by MULT on two n-bit numbers
• What is T(n)? Is it (n2)?
• Hard to compute directly
• Easier to express as a recurrence relation!
• T(1) = k for some constant k
• T(n) = 4 T(n/2) + c1n + c2 for some constants c1 and c2

• How can we get a () expression for T(n)?

MULT(X,Y):

 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 RETURN 

   MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d)
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Time complexity of MULT
Make it concrete
• T(1) = 1
• T(n) = 4 T(n/2) + n  

Technique 1: Guess and verify
T(n) = 2n2 –n
Holds for n=1
T(n) = 4 (2(n/2)2 –n/2 + n)
        = 2n2 –n
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Time complexity of MULT
• T(1) = 1 & T(n) = 4 T(n/2) + n  

Technique 2:  Expand recursion 
T(n) = 4 T(n/2) + n
        = 4 (4T(n/4) + n/2) + n = 42T(n/4) + n + 2n
        = 42(4T(n/8) + n/4) + n + 2n 
        = 43T(n/8) + n + 2n + 4n
        = ………
        = 4kT(1) + n + 2n + 4n + … + 2k-1n where 2k= n    

GUESS
        = n2 + n (1 + 2 + 4 + … + 2k-1)
        = n2 + n (2k-1) 
        = 2 n2  - n   [NOT FASTER THAN BEFORE]
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Gaussified MULT (Karatsuba 1962)

•T(n) = 3 T(n/2) + n
•Actually: T(n) = 2 T(n/2) + T(n/2 + 1) + kn

MULT(X,Y):

 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN  e2n + (MULT(a+b, c+d) – e - f) 2n/2 + f
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Time complexity of Gaussified MULT
• T(1) = 1 & T(n) = 3 T(n/2) + n  
Technique 2:  Expand recursion 
T(n) = 3 T(n/2) + n
        = 3 (3T(n/4) + n/2) + n = 32T(n/4) + n + 3/2n
        = 32(3T(n/8) + n/4) + n + 3/2n 
        = 33T(n/8) + n + 3/2n + (3/2)2n
        = ………
        = 3kT(1) + n + 3/2n + (3/2)2n + … + (3/2)k-1n where 2k= n  
        = 3 log2 n + n(1 + 3/2 + (3/2)2 + … + (3/2)k-1)
        = n log2 3 + 2n ((3/2)k-1) 
        = n log2 3 + 2n (n log2 3 /n -1) 
        = 3n log2 3 - 2n

Not just 25% savings!
θ(n2) vs θ(n1.58..)
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Divide and Conquer algorithms
Example 2:  Merge Sort
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Merge Sort: Algorithm 

Merge-Sort(A, p, r)
   if p < r then
      q(p+r)/2
      Merge-Sort(A, p, q)
      Merge-Sort(A, q+1, r)
      Merge(A, p, q, r)

Merge-Sort(A, p, r)
   if p < r then
      q(p+r)/2
      Merge-Sort(A, p, q)
      Merge-Sort(A, q+1, r)
      Merge(A, p, q, r)

Merge(A, p, q, r)
   Take the smallest of the two topmost elements of 
sequences A[p..q] and A[q+1..r] and put into the 
resulting sequence. Repeat this, until both sequences 
are empty. Copy the resulting sequence into A[p..r]. 

Merge(A, p, q, r)
   Take the smallest of the two topmost elements of 
sequences A[p..q] and A[q+1..r] and put into the 
resulting sequence. Repeat this, until both sequences 
are empty. Copy the resulting sequence into A[p..r]. 
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Merge Sort: Example
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Merge Sort: Example
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Merge Sort: Example
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Merge Sort: Example
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Recurrences
• Running times of algorithms with Recursive calls can 

be described using recurrences
• A recurrence is an equation or inequality that 

describes a function in terms of its value on smaller 
inputs

Example: Merge Sort
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2 ( / 2) ( )   if 1
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T n
T n n n
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Solving recurrences

• Repeated substitution method
– Expanding the recurrence by substitution and 

noticing patterns
• Substitution method

– guessing the solutions
– verifying the solution by the mathematical 

induction
• Recursion-trees
• Master method

– templates for different classes of recurrences
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Repeated Substitution Method

• Let’s find the running time of merge sort (let’s 
assume that n=2b, for some b).
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Repeated Substitution Method
• The procedure is straightforward:

– Substitute
– Expand
– Substitute 
– Expand
– …
– Observe a pattern and write how your expression 

looks after the i-th substitution
– Find out what the value of i (e.g., lg n) should be to 

get the base case of the recurrence (say T(1))
– Insert the value of T(1) and the expression of i into 

your expression
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Substitution method

3 3
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Recursion Tree

• A recursion tree is a convenient way to visualize what 
happens when a recurrence is iterated

• Construction of a recursion tree

2( ) ( / 4) ( / 2)T n T n T n n  
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Recursion Tree
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Recursion Tree
( ) ( /3) (2 /3)T n T n T n n  
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Master Method
• The idea is to solve a class of recurrences that have 

the form

• a  1 and b > 1, and f  is asymptotically positive!
• Abstractly speaking, T(n) is the runtime for an 

algorithm and we know that
– a subproblems of size n/b are solved recursively, 

each in time T(n/b)
– f(n) is the cost of dividing the problem and 

combining the results. In merge-sort 

( ) ( / ) ( )T n aT n b f n 

( ) 2 ( / 2) ( )T n T n n 
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Master Theorem Summarized
• Given a recurrence of the form 

• The master method cannot solve every recurrence 
of this form; there is a gap between cases 1 and 2, 
as well as cases 2 and 3
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Using the Master Theorem

• Extract a, b, and f(n) from a given recurrence
• Determine 
• Compare f(n) and             asymptotically 
• Determine appropriate MT case, and apply
• Example merge sort

logb an
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Example 3: Binary Search

Binary-search(A, p, r, s):
   q(p+r)/2 
   if A[q]=s then return q
   else if A[q]>s then 
        Binary-search(A, p, q-1, s)
   else Binary-search(A, q+1, r, s)      

Binary-search(A, p, r, s):
   q(p+r)/2 
   if A[q]=s then return q
   else if A[q]>s then 
        Binary-search(A, p, q-1, s)
   else Binary-search(A, q+1, r, s)      

T(n) = T(n/2) + 1
a=1, b=2,  c = logb a= 0, nc = 1
f(n) = 1
Case 2: T(n) = ( log2 n)
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Example 4: Max and min

T(n) = 2T(n/2) + 2
a=2, b=2,  c = logb a= 2, nc = n
f(n) = 1
Case 1: T(n) = (n)


