
12/1/2014 1

Recursion
Today:
• Ch 8.1 Applications of Recurrence

relations
• Ch 8.2 Solving Recurrence relations
• Ch 8.3 Divide and conquer algorithms

12/1/2014 2

Applications of Recurrence relations
The Tower of Hanoi puzzle:

• Move all but the bottom disk to peg 2
• Move bottom disk to peg 3
• Move all remaining disk to peg 3

12/1/2014 3

Applications of Recurrence relations
• The Tower of Hanoi puzzle

12/1/2014 4

Applications of Recurrence relations
The Tower of Hanoi puzzle:
• Move all but the bottom disk to peg 2
• Move bottom disk to peg 3
• Move all remaining disk to peg 3

Hn = number of moves needed for the n-disk
problem

Hn = 2Hn-1 +1

Unroll the recursion and prove by induction

12/1/2014 5

Applications of Recurrence relations
Number of bit strings without 2 consecutive 0's:
• must end in 1 or 10

an = an-1 + an-2

Same as Fibonacci but a1 = 2

12/1/2014 6

Applications of Recurrence relations
Dynamic programming algorithms:

 Counting the number of paths in a rectangular
lattice if you can only go right or down.

12/1/2014 7

Solving Recurrence relations
General soln for linear, homogenous equations

of order 2:

Put an = rn

So the Fibonacci recurrence yields
r2 = r + 1
This has solutions r1, r2. The solution of the

Fibonacci recurrence relation is
an = 1r1

n + 2r2
n.

1, 2 must be computed from first two values.

12/1/2014 8

Solving Recurrence relations
Can be extended to higher order equations,
non-homogenous equations.

12/1/2014 9

Divide and Conquer algorithms
Example 1: Multiplication of 2 n-bit numbers

Example 2: Merge sort

Example 3:
Finding maximum and minimum of n numbers

Example 4: Binary Search

12/1/2014 10

Divide and Conquer algorithms
Example 1: Multiplication of 2 n-bit numbers

12/1/2014 1112/1/2014 11

Multiplication of two n-bit numbers

• X =
• Y =

• X = a 2n/2 + b Y = c 2n/2 + d

• XY = ac 2n + (ad+bc) 2n/2 + bd

a b
c d

MULT(X,Y):

 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 RETURN

 MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d)

12/1/2014 1212/1/2014 12

Time complexity of MULT
• T(n) = time taken by MULT on two n-bit numbers
• What is T(n)? Is it (n2)?
• Hard to compute directly
• Easier to express as a recurrence relation!
• T(1) = k for some constant k
• T(n) = 4 T(n/2) + c1n + c2 for some constants c1 and c2

• How can we get a () expression for T(n)?

MULT(X,Y):

 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 RETURN

 MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d)

12/1/2014 1312/1/2014 13

Time complexity of MULT
Make it concrete
• T(1) = 1
• T(n) = 4 T(n/2) + n

Technique 1: Guess and verify
T(n) = 2n2 –n
Holds for n=1
T(n) = 4 (2(n/2)2 –n/2 + n)
 = 2n2 –n

12/1/2014 1412/1/2014 14

Time complexity of MULT
• T(1) = 1 & T(n) = 4 T(n/2) + n

Technique 2: Expand recursion
T(n) = 4 T(n/2) + n
 = 4 (4T(n/4) + n/2) + n = 42T(n/4) + n + 2n
 = 42(4T(n/8) + n/4) + n + 2n
 = 43T(n/8) + n + 2n + 4n
 = ………
 = 4kT(1) + n + 2n + 4n + … + 2k-1n where 2k= n

GUESS
 = n2 + n (1 + 2 + 4 + … + 2k-1)
 = n2 + n (2k-1)
 = 2 n2 - n [NOT FASTER THAN BEFORE]

12/1/2014 1512/1/2014 15

Gaussified MULT (Karatsuba 1962)

•T(n) = 3 T(n/2) + n
•Actually: T(n) = 2 T(n/2) + T(n/2 + 1) + kn

MULT(X,Y):

 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN e2n + (MULT(a+b, c+d) – e - f) 2n/2 + f

12/1/2014 1612/1/2014 16

Time complexity of Gaussified MULT
• T(1) = 1 & T(n) = 3 T(n/2) + n
Technique 2: Expand recursion
T(n) = 3 T(n/2) + n
 = 3 (3T(n/4) + n/2) + n = 32T(n/4) + n + 3/2n
 = 32(3T(n/8) + n/4) + n + 3/2n
 = 33T(n/8) + n + 3/2n + (3/2)2n
 = ………
 = 3kT(1) + n + 3/2n + (3/2)2n + … + (3/2)k-1n where 2k= n
 = 3 log2 n + n(1 + 3/2 + (3/2)2 + … + (3/2)k-1)
 = n log2 3 + 2n ((3/2)k-1)
 = n log2 3 + 2n (n log2 3 /n -1)
 = 3n log2 3 - 2n

Not just 25% savings!
θ(n2) vs θ(n1.58..)

12/1/2014 17

Divide and Conquer algorithms
Example 2: Merge Sort

12/1/2014 18

Merge Sort: Algorithm

Merge-Sort(A, p, r)
 if p < r then
 q(p+r)/2
 Merge-Sort(A, p, q)
 Merge-Sort(A, q+1, r)
 Merge(A, p, q, r)

Merge-Sort(A, p, r)
 if p < r then
 q(p+r)/2
 Merge-Sort(A, p, q)
 Merge-Sort(A, q+1, r)
 Merge(A, p, q, r)

Merge(A, p, q, r)
 Take the smallest of the two topmost elements of
sequences A[p..q] and A[q+1..r] and put into the
resulting sequence. Repeat this, until both sequences
are empty. Copy the resulting sequence into A[p..r].

Merge(A, p, q, r)
 Take the smallest of the two topmost elements of
sequences A[p..q] and A[q+1..r] and put into the
resulting sequence. Repeat this, until both sequences
are empty. Copy the resulting sequence into A[p..r].

12/1/2014 19

Merge Sort: Example

12/1/2014 20

Merge Sort: Example

12/1/2014 21

Merge Sort: Example

12/1/2014 22

Merge Sort: Example

12/1/2014 23

Merge Sort: Example

12/1/2014 24

Merge Sort: Example

12/1/2014 25

Merge Sort: Example

12/1/2014 26

Merge Sort: Example

12/1/2014 27

Merge Sort: Example

12/1/2014 28

Merge Sort: Example

12/1/2014 29

Merge Sort: Example

12/1/2014 30

Merge Sort: Example

12/1/2014 31

Merge Sort: Example

12/1/2014 32

Merge Sort: Example

12/1/2014 33

Merge Sort: Example

12/1/2014 34

Merge Sort: Example

12/1/2014 35

Merge Sort: Example

12/1/2014 36

Merge Sort: Example

12/1/2014 37

Merge Sort: Example

12/1/2014 38

Merge Sort: Example

12/1/2014 39

Merge Sort: Example

12/1/2014 40

Merge Sort: Example

12/1/2014 41

Merge Sort: Example

12/1/2014 42

Recurrences
• Running times of algorithms with Recursive calls can

be described using recurrences
• A recurrence is an equation or inequality that

describes a function in terms of its value on smaller
inputs

Example: Merge Sort

(1) if 1
()

2 (/ 2) () if 1
n

T n
T n n n

solving_trivial_problem if 1
()

num_pieces (/ subproblem_size_factor) dividing combining if 1
n

T n
T n n

12/1/2014 43

Solving recurrences

• Repeated substitution method
– Expanding the recurrence by substitution and

noticing patterns
• Substitution method

– guessing the solutions
– verifying the solution by the mathematical

induction
• Recursion-trees
• Master method

– templates for different classes of recurrences

12/1/2014 44

Repeated Substitution Method

• Let’s find the running time of merge sort (let’s
assume that n=2b, for some b).

1 if 1
()

2 (/ 2) if 1
n

T n
T n n n

2

2

3

lg

() 2 / 2 substitute
2 2 / 4 / 2 expand

2 (/ 4) 2 substitute
2 (2 (/ 8) / 4) 2 expand

 2 (/ 8) 3 observe the pattern
() 2 (/ 2)

2 (/) lg lg

i i

n

T n T n n
T n n n

T n n
T n n n

T n n
T n T n in

T n n n n n n n

12/1/2014 45

Repeated Substitution Method
• The procedure is straightforward:

– Substitute
– Expand
– Substitute
– Expand
– …
– Observe a pattern and write how your expression

looks after the i-th substitution
– Find out what the value of i (e.g., lg n) should be to

get the base case of the recurrence (say T(1))
– Insert the value of T(1) and the expression of i into

your expression

12/1/2014 46

Substitution method

3 3

3

3

3

3

Solve () 4 (/ 2)
1) Guess that () (), i.e., that of the form
2) Assume () for / 2 and
3) Prove () by induction

() 4 (/ 2) (recurrence)
4c(n/2) (ind. hypoth.)

 (si
2

T n T n n
T n O n T cn

T k ck k n
T n cn

T n T n n
n

c n n

3 3

3

3

0 0

mplify)

 (rearrange)
2

 if 2 and 1 (satisfy)
Thus () ()!
Subtlety: Must choose big enough to handle

() (1) for for some

ccn n n

cn c n
T n O n

c
T n n n n

12/1/2014 47

Recursion Tree

• A recursion tree is a convenient way to visualize what
happens when a recurrence is iterated

• Construction of a recursion tree

2() (/ 4) (/ 2)T n T n T n n

12/1/2014 48

Recursion Tree

12/1/2014 49

Recursion Tree
() (/3) (2 /3)T n T n T n n

12/1/2014 50

Master Method
• The idea is to solve a class of recurrences that have

the form

• a 1 and b > 1, and f is asymptotically positive!
• Abstractly speaking, T(n) is the runtime for an

algorithm and we know that
– a subproblems of size n/b are solved recursively,

each in time T(n/b)
– f(n) is the cost of dividing the problem and

combining the results. In merge-sort

() (/) ()T n aT n b f n

() 2 (/ 2) ()T n T n n

12/1/2014 51

Master Theorem Summarized
• Given a recurrence of the form

• The master method cannot solve every recurrence
of this form; there is a gap between cases 1 and 2,
as well as cases 2 and 3

() (/) ()T n aT n b f n

log

log

log

log

log
0

1. ()

()

2. ()

() lg

3. () and (/) (), for some 1,

() ()

b

b

b

b

b

a

a

a

a

a

f n O n

T n n

f n n

T n n n

f n n af n b cf n c n n

T n f n

12/1/2014 52

Using the Master Theorem

• Extract a, b, and f(n) from a given recurrence
• Determine
• Compare f(n) and asymptotically
• Determine appropriate MT case, and apply
• Example merge sort

logb an

2log log 2

log

() 2 (/ 2) ()
2, 2; ()

Also () ()

Case 2 () lg lg:

b

b

a

a

T n T n n
a b n n n n

f n n

T n n n n n

logb an

12/1/2014 53

Example 3: Binary Search

Binary-search(A, p, r, s):
 q(p+r)/2
 if A[q]=s then return q
 else if A[q]>s then
 Binary-search(A, p, q-1, s)
 else Binary-search(A, q+1, r, s)

Binary-search(A, p, r, s):
 q(p+r)/2
 if A[q]=s then return q
 else if A[q]>s then
 Binary-search(A, p, q-1, s)
 else Binary-search(A, q+1, r, s)

T(n) = T(n/2) + 1
a=1, b=2, c = logb a= 0, nc = 1
f(n) = 1
Case 2: T(n) = (log2 n)

12/1/2014 54

Example 3: Binary Search

Binary-search(A, p, r, s):
 q(p+r)/2
 if A[q]=s then return q
 else if A[q]>s then
 Binary-search(A, p, q-1, s)
 else Binary-search(A, q+1, r, s)

Binary-search(A, p, r, s):
 q(p+r)/2
 if A[q]=s then return q
 else if A[q]>s then
 Binary-search(A, p, q-1, s)
 else Binary-search(A, q+1, r, s)

T(n) = T(n/2) + 1
a=1, b=2, c = logb a= 0, nc = 1
f(n) = 1
Case 2: T(n) = (log2 n)

12/1/2014 55

Example 4: Max and min

T(n) = 2T(n/2) + 2
a=2, b=2, c = logb a= 2, nc = n
f(n) = 1
Case 1: T(n) = (n)

