Sets

- Unordered collection of elements, e.g.,
 - Single digit integers
 - Nonnegative integers
 - faces of a die
 - sides of a coin
 - students enrolled in 1019N, W 2007.
- Equality of sets
- Note: Connection with data types

1

Describing sets

- English description
- Set builder notation

Note:

The elements of a set can be sets, pairs of elements, pairs of pairs, triples, ...!!

Cartesian product:

 $A \times B = \{(a,b) | a \in A \text{ and } b \in B\}$

Sets of numbers

- Natural numbers
- Whole numbers
- Integers
- Rational numbers
- Real numbers
- Complex numbers
- · Co-ordinates on the plane

3

Sets - continued

- Cardinality number of (distinct) elements
- Finite set cardinality some finite integer n
- Infinite set a set that is not finite

Special sets

- Universal set
- Empty set φ (cardinality = ?)

4

Sets vs Sets of sets

- {1,2} vs {{1,},{2}}
- $\{\}$ vs $\{\{\}\}$ = $\{\phi\}$

5

Subsets

- A \subseteq B: \forall x (x \in A \rightarrow x \in B) Theorem: For any set S, ϕ \subseteq S and S \subseteq S.
- Proper subset: $A \subset B$: $\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$
- Power set P(S): set of all subsets of S.
- P(S) includes S, φ.
- Tricky question What is P(φ) ?

$$P(\phi) = \{\phi\}$$
Similarly, $P(\{\phi\}) = \{\phi, \{\phi\}\}$

6

Set operations

- Union $A \cup B = \{ x \mid (x \in A) \lor (x \in B) \}$
- Intersection A \cap B = { x | (x \in A) \wedge (x \in B)} Disjoint sets - A, B are disjoint iff A \cap B = ϕ
- Difference A B = $\{x \mid (x \in A) \land (x \notin B)\}$ Symmetric difference
- Complement A^c or $\bar{A} = \{x \mid x \notin A\} = U A$
- Venn diagrams

7

Laws of set operations

- Page 130 notice the similarities with the laws for Boolean operators
- Remember De Morgan's Laws and distributive laws.
- Proofs can be done with Venn diagrams.

E.g.:
$$(A \cap B)^c = A^c \cup B^c$$

Proofs via membership tables (page 131)

Cartesian products

• A x B

9

Introduction to functions

A function from A to B is an assignment of exactly one element of B to each element of A.

E.g.:

- Let A = B = integers, f(x) = x+10
- Let A = B = integers, $f(x) = x^2$

Not a function

- A = B = real numbers $f(x) = \sqrt{x}$
- A = B = real numbers, f(x) = 1/x

Terminology

- A = Domain, B = Co-domain
- f: A → B (not "implies")
- range(f) = $\{y \mid \exists x \in A \ f(x) = y\} \subseteq B$
- int floor (float real) { ... }
- $f_1 + f_2$, $f_1 f_2$
- One-to-one INJECTIVE
- Onto SURJECTIVE
- One-to-one correspondence BIJECTIVE

11

Operations with functions

- Inverse $f^{-1}(x) \neq 1/f(x)$ $f^{-1}(y) = x$ iff f(x) = y
- Composition: If f: A → B, g: C → A, then f ° g: C → B, f ° g(x) = f(g(x))

Graphs of functions

13

Special functions

• All domains: identity $\Im(x)$ Note: $f \circ f^{-1} = f^{-1} \circ f = \Im$

- Integers: floor, ceiling, DecimalToBinary, BinaryToDecimal
- Reals: exponential, log

Special functions

- DecimalToBinary, BinaryToDecimal
- E.g. $7 = 111_2$, $1001_2 = 9$
- BinaryToDecimal n = 1001₂:
- $n = 1*2^3 + 0*2^2 + 0*2^1 + 1*2^0 = 9$
- DecimalToBinary n = 7:
- $b_1 = n \text{ rem } 2 = 1, n = n \text{ div } 2 = 3$
- $b_2 = n \text{ rem } 2 = 1, n = n \text{ div } 2 = 1$
- $b_3 = n \text{ rem } 2 = 1, n = n \text{ div } 2 = 0.$
- STOP

15

Special functions – contd.

- Changing bases: In general need to go through the decimal representation
- E.g: $101_7 = ?_9$
- $101_7 = 1*7^2 + 0*7^1 + 1*7^0 = 50$
- Decimal to Base 9:
- $d_1 = n \text{ rem } 9 = 5, n = n \text{ div } 9 = 5$
- $b_2 = n \text{ rem } 9 = 5, n = n \text{ div } 9 = 0.$
- STOP
- So $101_7 = 55_9$

16

Special functions – tricks

- Changing bases that are powers of 2:
- · Can often use shortcuts.
- Binary to Octal:
- $10111101 = 275_8$
- · Binary to Hexadecimal:
- 10111101 = BD₁₆
- Hexadecimal to Octal: Go through binary, not decimal.

17

Sequences

- Finite or infinite
- Calculus limits of infinite sequences (proving existence, evaluation...)
- E.g.
 - Arithmetic progression (series)
 - 1, 4, 7, 10, ...
 - Geometric progression (series)
 - 3, 6, 12, 24, 48 ...

Similarity with series

- $S = a_1 + a_2 + a_3 + a_4 + \dots$ (n terms)
- Consider the sequence

$$S_1$$
, S_2 , S_3 , ... S_n , where

$$S_i = a_1 + a_2 + ... + a_i$$

In general we would like to evaluate sums of series – useful in algorithm analysis.

e.g. what is the total time spent in a nested loop?

19

Sums of common series

Arithmetic series

e.g. 1 + 2 + ... + n (occurs in the analysis of running time of simple for loops)

general form $\Sigma_i t_i$, t_i = a + ib

Geometric series

e.g.
$$1 + 2 + 2^2 + 2^3 + \dots + 2^n$$

general form $\Sigma_i t_i$, t_i = ar^i

More general series (not either of the above)

$$1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2$$

Sums of common series - 2

- Technique for summing arithmetic series
- Technique for summing geometric series
- More general series more difficult

21

Caveats

- Need to be very careful with infinite series
- In general, tools from calculus are needed to know whether an infinite series sum exists.
- There are instances where the infinite series sum is much easier to compute and manipulate, e.g. geometric series with r < 1.

Cardinality revisited

- A set is finite (has finite cardinality) if its cardinality is some (finite) integer n.
- Two sets A,B have the same cardinality iff there is a one-to-one correspondence from A to B
- E.g. alphabet (lower case)
- a b c
- 123.....

23

Infinite sets

- Why do we care?
- Cardinality of infinite sets
- Do all infinite sets have the same cardinality?

Countable sets

Defn: Is finite OR has the same cardinality as the positive integers.

• Why do we care?

E.g.

- The algorithm works for "any n"
- Induction!

25

Countable sets - contd.

- Proving this involves (usually) constructing an explicit bijection with positive integers.
- Fact (Will not prove): Any subset of a countable set is countable.

Will prove that

- The rationals are countable!
- · The reals are not countable

The integers are countable

· Write them as

 Find a bijection between this sequence and 1,2,3,4,.....

Notice the pattern:

$$1 \rightarrow 0$$
 $2 \rightarrow 1$ So f(n) = n/2 if n even $3 \rightarrow -1$ $4 \rightarrow 2$ -(n-1)/2 o.w.

 $5 \rightarrow -2$ $6 \rightarrow 3$

27

Other simple bijections

· Odd positive integers

$$1 \rightarrow 1$$
 $2 \rightarrow 3$ $3 \rightarrow 5$ $4 \rightarrow 7$

 Union of two countable sets A, B is countable:

Say f: N \rightarrow A, g:N \rightarrow B are bijections New bijection h: N \rightarrow A \cup B h(n) = f(n/2) if n is even = g((n-1)/2) if n is odd.

The rationals are countable

- Show that Z⁺ x Z⁺ is countable.
- Trivial injection between Q⁺, Z⁺ x Z⁺.
- To go from Q⁺ to Q, use the trick used to construct a bijection from Z to Z⁺.
- Details on the board.

29

The reals are not countable

- Wrong proof strategy:
- Suppose it is countable
- Write them down in increasing order
- Prove that there is a real number between any two successive reals.
- WHY is this incorrect?
 (Note that the above "proof" would show that the rationals are not countable!!)

The reals are not countable - 2

- Cantor diagonalization argument (1879)
- VERY powerful, important technique.
- Proof by contradiction.
- Sketch (details done on the board)
 - Assume countable
 - look at all numbers in the interval [0,1)
 - list them in ANY order
 - show that there is some number not listed

31

Notes

- The cardinality of neither the reals nor the integers are finite, yet one set is countable, the other is not.
- Q: Is there a set whose cardinality is "inbetween"?
- Q: Is the cardinality of R the same as that of [0,1)?