
1
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Math/EECS 1019C:
Discrete Mathematics for Computer Science

Fall 2014

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.eecs.yorku.ca/course/1019
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Administrivia

Kenneth H. Rosen. 
Discrete Mathematics 
and Its Applications, 
7th Edition. McGraw 

Hill, 2012.

Lectures: Mon  7 - 10 pm (CLH A)

Exams: 3 tests, 15% each*(35%), 
             final (40%)

Homework (25%): equally divided 
between several assignments.

Slides:  should be available after the class

Office hours: Wed 4-6 pm or by 
appointment at CSEB 3043. 

Textbook:
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Administrivia – contd.
• Cheating will not be tolerated. Visit the 

class webpage for more details on 
policies.

• TA: Tutorials/office hours TBA.
• HW submitted late will not be graded.
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Course objectives
We will focus on two major goals:
• Basic tools and techniques in discrete 

mathematics
– Propositional logic
– Set Theory, Functions and Relations
– Simple algorithms
– Induction, recursion
– Sums
– Introductory Graph Theory

• Precise and rigorous mathematical reasoning
– Writing proofs
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To do well you should:

• Study with pen and paper
• Ask for help early
• Practice, practice, practice…
• Follow along in class rather than take notes
• Ask questions in class or outside class
• Keep up with the class
• Read the book, not just the slides
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Mathematical Reasoning
• What is Mathematics?

– Mathematics as a precise language

• Motivation (for EECS)
– Making precise, rigorous claims

• Procedure
– Axioms
– Inference
– Facts/Theorems
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Examples of reasoning about 
problems

•  0.999999999999999….=1?
• There exists integers a,b,c that satisfy 

the equation a2+b2 = c2

• The program that I wrote works 
correctly for all possible inputs…..

• The program that I wrote never hangs 
(i.e. always terminates)…
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Tools for reasoning: Logic

Ch. 1: Introduction to Propositional Logic
• Truth values, truth tables
• Boolean logic:     
• Implications:   
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Why study propositional logic?
• A formal mathematical “language” for 

precise reasoning.
• Start with propositions.
• Add other constructs like negation, 

conjunction, disjunction, implication etc.
• All of these are based on ideas we use 

daily to reason about things.  
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Propositions
• Declarative sentence
• Must be either True or False.

Propositions: 
• York University is in Toronto
• York University is in downtown Toronto
• All students at York are Computer Sci. majors

Not propositions:
• Do you like this class?
• There are x students in this class.



6

11EECS 1019, Fall 2014

Propositions - 2
• Truth value: True or False
• Variables: p,q,r,s,…
• Negation:
• p  (“not p”)
• Truth tables

TF

FT

pp
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Caveat: negating propositions
p: “it is not the case that p is true”

p: “it rained more than 20 inches in TO”
p: “John has many iPads”

Practice: Questions 1-7 page 12.
Q10 (a) p: “the election is decided”
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Conjunction, Disjunction
• Conjunction: p  q  [“and”]
• Disjunction: p  q   [“or”]

TFFT

TTTT

FFFF

TFTF

p  qp  qqp
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Examples
Q11, page 13
p: It is below freezing
q: It is snowing

(a) It is below freezing and snowing
(b) It is below freezing but not snowing
(d) It is either snowing or below freezing 

(or both)
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Exclusive OR (XOR)
• p  q – T if p and q have different truth 

values, F otherwise
• Colloquially, we often use OR 

ambiguously – “an entrée comes with 
soup or salad” implies XOR, but 
“students can take MATH XXXX if they 
have taken MATH 2320 or MATH 1019” 
usually means the normal OR (so a 
student who has taken both is still 
eligible for MATH XXXX). 
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Conditional
• p  q [“if p then q”]
• p: hypothesis, q: conclusion
• E.g.: “If you turn in a homework late, it will not 

be graded”;  “If you get 100% in this course, 
you will get an A+”. 

• TRICKY: Is p  q TRUE if p is FALSE?
   YES!! 
• Think of “If you get 100% in this course, you 

will get an A+” as a promise – is the promise 
violated if someone gets 50% and does not 
receive an A+? 
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Conditional - 2
• p  q [“if p then q”]
• Truth table: 

FFFT

TTTT

TTFF

TTTF

 p  qp  qqp

Note the truth table of  p  q
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Logical Equivalence
• p  q and  p  q are logically equivalent
• Truth tables are the simplest way to 

prove such facts.
• We will learn other ways later.
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Contrapositive
• Contrapositive of p  q is q  p
• Any conditional and its contrapositive 

are logically equivalent (have the same 
truth table) – Check by writing down the 
truth table.

• E.g. The contrapositive of “If you get 
100% in this course, you will get an A+” 
is “If you do not get an A+ in this course, 
you did not get 100%”. 
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E.g.: Proof using contrapositive

Prove: If x2 is even, x is even
• Proof 1: x2 = 2a for some integer a. 

Since 2 is prime, 2 must divide x.
• Proof 2: if x is not even, x is odd. 

Therefore x2 is odd. This is the 
contrapositive of the original assertion.
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Converse
• Converse of p  q is q  p
• Not logically equivalent to conditional
• Ex 1: “If you get 100% in this course, 

you will get an A+” and “If you get an A+ 
in this course, you scored 100%” are 
not equivalent.

• Ex 2: If you won the lottery, you are rich.
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Other conditionals
Inverse: 
• inverse of p  q is p  q 
• How is this related to the converse?
Biconditional: 
• “If and only if”
• True if p,q have same truth values, false 

otherwise. Q: How is this related to XOR?

• Can also be defined as (p  q)  (q  p)  
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Example
• Q16c, page 14:
 1+1=3 if and only if monkeys can fly.
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Readings and notes 
• Read pages 1-12.
• Think about the notion of truth 

tables.
• Master the rationale behind the 

definition of conditionals.
• Practice translating English 

sentences to propositional logic 
statements.



13

25EECS 1019, Fall 2014

Next
Ch. 1.2, 1.3: Propositional Logic - contd

–  Compound propositions, precedence rules
–  Tautologies and logical equivalences
–  Read only the first section called 

“Translating English Sentences” in 1.2.
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Compound Propositions 
• Example: p  q  r : Could be 

interpreted as (p  q)  r or p  (q  r) 
• precedence order:       (IMP!) 

(Overruled by brackets)
• We use this order to compute truth 

values of compound propositions.
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Tautology
• A compound proposition that is always 

TRUE, e.g. q  q
• Logical equivalence redefined: p,q are 

logical equivalences if  p  q is a 
tautology. Symbolically p  q. 

• Intuition: p  q is true precisely when 
p,q have the same truth values.
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Manipulating Propositions
• Compound propositions can be 

simplified by using simple rules.
• Read page 25 - 28.
• Some are obvious, e.g. Identity, 

Domination, Idempotence, double 
negation, commutativity, associativity

• Less obvious: Distributive, De Morgan’s 
laws, Absorption
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Distributive Laws
p  (q  r)  (p  q)  (p  r) 
Intuition (not a proof!) – For the LHS to be true: p must 

be true and q or r must be true. This is the same as 
saying p and q must be true or p and r must be true.

p  (q  r)  (p  q)  (p  r) 
Intuition (less obvious) – For the LHS to be true: p must 

be true or both q and r must be true. This is the same 
as saying p or q must be true and p or r must be true.

Proof: use truth tables.
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De Morgan’s Laws
(q  r)  q  r 
Intuition – For the LHS to be true: neither q nor r can be 

true. This is the same as saying q and r must be false.

(q  r)  q  r
Intuition – For the LHS to be true: q  r must be false. 

This is the same as saying q or r must be false.

Proof: use truth tables.
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Using the laws
• Q: Is p  (p  q) a tautology?
• Can use truth tables
• Can write a compound proposition and 

simplify
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Inference in Propositional Logic
• in Section 1.6 pages 71-75
• Recall: the reason for studying logic 

was to formalize derivations and proofs.
• How can we infer facts using logic?
• Simple inference rule (Modus Ponens) : 
   From (a) p  q and (b) p is TRUE, 
   we can infer that q is TRUE. 
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Modus Ponens continued
Example: 
(a) if these lecture slides (ppt) are online 

then you can print them out
(b)  these lecture slides are online

Can you print out the slides?

• Similarly, From p  q, q  r and p is 
TRUE, we can infer that r is TRUE.
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Inference rules - continued
• ((p  q)  p )  q is a TAUTOLOGY.
• Modus Tollens, Hypothetical syllogism 

and disjunctive syllogism can be seen 
as alternative forms of Modus Ponens

• Other rules like 
  “From p is true we can infer  p  q” are 

very intuitive
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Inference rules - continued
Resolution: From
 (a) p  q and
 (b)  p  r, we can infer that
       q  r
Exercise: check that 
((p  q)  ( p  r))  (q  r) 
is a TAUTOLOGY.
Very useful in computer generated proofs.
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Inference rules - continued

• Read rules on page 72.
• Understanding the rules is crucial, 

memorizing is not. 
• You should be able to see that the rules 

make sense and correspond to our 
intuition about formal reasoning.
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Limitations of Propositional Logic
• What can we NOT express using 

predicates?
   Ex: How do you make a statement 

about all even integers?
       If x >2 then x2 >4

• A more general language: Predicate 
logic (Sec 1.4)
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Next: Predicate Logic
Ch 1.4

– Predicates and quantifiers
– Rules of Inference
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Predicate Logic
• A predicate is a proposition that is a 

function of one or more variables.
   E.g.: P(x): x is an even number. So P(1) 

is false, P(2) is true,….
• Examples of predicates:

– Domain ASCII characters - IsAlpha(x) : 
TRUE iff x is an alphabetical character.

– Domain floating point numbers - IsInt(x): 
TRUE iff x is an integer.

– Domain integers: Prime(x) - TRUE if x is 
prime, FALSE otherwise.

40EECS 1019, Fall 2014

Quantifiers
• describes the values of a variable that 

make the predicate true. E.g. x P(x)
• Domain or universe: set of values taken 

by a variable (sometimes implicit)
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Two Popular Quantifiers
• Universal: x P(x) – “P(x) for all x in the 

domain”
• Existential: x P(x) – “P(x) for some x in 

the domain” or “there exists x such that P(x) is 
TRUE”.

• Either is meaningless if the domain is not 
known/specified.

• Examples (domain real numbers)
– x (x2 >= 0)
– x (x >1)
– (x>1) (x2 > x) – quantifier with restricted domain
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Using Quantifiers
Domain integers:
• Using implications: The cube of all 

negative integers is negative. 
    x (x < 0) (x3 < 0)
•  Expressing sums : 
           n
    n ( i = n(n+1)/2)
          i=1

Aside: summation notation



22

43EECS 1019, Fall 2014

Scope of Quantifiers
•   have higher precedence than 

operators from Propositional Logic; so x 
P(x)  Q(x) is not logically equivalent to 
x (P(x)  Q(x))

•   x (P(x)  Q(x))  x R(x)
   Say P(x): x is odd, Q(x): x is divisible by 3, R(x): (x=0) (2x >x)

• Logical Equivalence: P  Q iff they have 
same truth value no matter which domain 
is used and no matter which predicates 
are assigned to predicate variables.
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Negation of Quantifiers
• “There is no student who can …”
• “Not all professors are bad….”
• “There is no Toronto Raptor that can 

dunk like Vince …”
•  x P(x)   x P(x)   why?

•   x P(x)   x P(x)
• Careful: The negation of “Every Canadian 

loves Hockey” is NOT “No Canadian loves 
Hockey”! Many, many students make this mistake!



23

45EECS 1019, Fall 2014

Nested Quantifiers
• Allows simultaneous quantification of 

many variables. 
• E.g. – domain integers, 

–  x  y  z x2 + y2 = z2 (Pythagorean triples)

– n  x  y  z xn + yn = zn (Fermat’s Last 
Theorem implies this is false)

• Domain real numbers: 
– x  y  z (x < z < y)  (y < z < x) Is this true?

– x y z (x=y) (x < z < y)  (y < z < x)
– x y z (xy) (x < z < y)  (y < z < x)
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Nested Quantifiers - 2
x y (x + y = 0) is true over the integers
• Assume an arbitrary integer x.
• To show that there exists a y that satisfies 

the requirement of the predicate, choose y 
= -x. Clearly y is an integer, and thus is in 
the domain.

• So x + y = x + (-x) = x – x = 0.
• Since we assumed nothing about x (other 

than it is an integer), the argument holds 
for any integer x. 

• Therefore, the predicate is TRUE.
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Nested Quantifiers - 3

• Analogy: quantifiers are like loops: 
   An inner quantified variable can depend 

on the outer quantified variable. 
 E.g. in x y (x + y = 0) we chose y=-x, so 

for different x we need different y to 
satisfy the statement.

   p j Accept (p,j) 
 does NOT say that there is a j that will 

accept all p.

p,j have different domains
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Nested Quantifiers - 4

• Caution: In general, order matters! 
Consider the following propositions over 
the integer domain: 

   x y (x < y) and y x (x < y) 
• x y (x < y) : “there is no maximum 

integer”
• y x (x < y) : “there is a maximum 

integer”
• Not the same meaning at all!!!
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Negation of Nested Quantifiers
• Use the same rule as before carefully.
• Ex 1:  x y (x + y = 0) 

– This is equivalent to x y (x + y = 0) 
– This is equivalent to x  y (x + y = 0)
– This is equivalent to x  y (x + y  0)

• Ex 2: x y (x < y)
– This is equivalent to x y (x < y)
– This is equivalent to x y (x < y)
– This is equivalent to x y (x  y)
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Exercises

Check that:
• x y (x + y = 0) is not true over the 

positive integers.
• x y (x + y = 0) is not true over the 

integers.
• x <>0 y (y = 1/x) is true over the real 

numbers.
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Readings and notes 
• Read 1.4-1.5.
• Practice: Q2,8,16,30 (pg 65-67)

• Next: Rules of inference for quantified 
statements (1.6).
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Inference rules for quantified statements
• Very intuitive, e.g. Universal instantiation – 

If x P(x) is true, we infer that P(a) is true for 
any given a

• E.g.: Universal Modus Ponens: 

   x P(x)  Q(x) and P(a) imply Q(a)
   If x is odd then x2 is odd, a is odd. So a2 is 

odd.
• Read rules on page 76
• Again, understanding is required, memorization 

is not.
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Commonly used technique: 
Universal generalization

Prove: If x is even, x+2 is even
• Proof:

Prove: If x2 is even, x is even
[Note that the problem is to prove an implication.]

• Proof: if x is not even, x is odd. Therefore x2 is 
odd. This is the contrapositive of the original 
assertion.
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Aside: Inference and Planning
• The steps in an inference are useful for 

planning an action.
• Example: your professor has assigned 

reading from an out-of-print book. How 
do you do it?

• Example 2: you are participating in the 
television show “Amazing race”. How do 
you play?
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Aside 2: Inference and 
Automatic Theorem-Proving

• The steps in an inference are useful for 
proving assertions from axioms and 
facts.

• Why is it important for computers to 
prove theorems?
– Proving program-correctness
– Hardware design
– Data mining
– …..
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Aside 3: Inference and 
Automatic Theorem-Proving 
• Sometimes the steps of an inference 

(proof) are useful. E.g. on Amazon book 
recommendations are made. 

• You can ask why they recommended a 
certain book to you (reasoning).
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Next
• Introduction to Proofs (Sec 1.7)
• What is a (valid) proof?
• Why are proofs necessary?
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Introduction to Proof techniques
Why are proofs necessary?

What is a (valid) proof?

What details do you include/skip? 
“Obviously”, “clearly”…
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Assertions
• Axioms
• Proposition, Lemma, Theorem
• Corollary
• Conjecture
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Types of Proofs
• Direct proofs (including Proof by cases)
• Proof by contraposition
• Proof by contradiction
• Proof by construction
• Proof by Induction
• Other techniques
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Direct Proofs
• The average of any two primes greater 

than 2 is an integer.

• Every prime number greater than 2 can 
be written as the difference of two 
squares, i.e. a2 – b2.
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Proof by cases
If n is an integer, then n(n+1)/2 is an integer
• Case 1: n is even.
       or n = 2a, for some integer a
       So n(n+1)/2 = 2a*(n+1)/2 = a*(n+1),
       which is an integer.
• Case 2:  n is odd.
       n+1 is even, or n+1 = 2a, for an integer a
       So n(n+1)/2 = n*2a/2 = n*a,
       which is an integer.
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Proof by contraposition
If (pq)  (p+q)/2, then p  q
Direct proof left as exercise
Contrapositive:
If p = q, then (pq) = (p+q)/2
Easy: 
(pq) = (pp) = (p2) = p = (p+p)/2 = (p+q)/2.

64EECS 1019, Fall 2014

Proof by Contradiction
2 is irrational
• Suppose 2 is rational. Then 2 = p/q,
   such that p, q have no common factors.
   Squaring and transposing,
        p2 = 2q2 (even number)
        So, p is even (previous slide) 
        Or p = 2x for some integer x
        So 4x2 = 2q2 or q2 = 2x2 

        So, q is even (previous slide)
        So, p,q are both even – they have a common 

factor of 2. CONTRADICTION.
        So 2 is NOT rational.                 Q.E.D.
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Proof by Contradiction - 2
In general, start with an assumption that 

statement A is true. Then, using 
standard inference procedures infer that 
A is false. This is the contradiction.

Recall: for any proposition p, p  p
must be false 
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Existence Proofs
There exists integers x,y,z satisfying
x2+y2 = z2

Proof: x = 3, y = 4, z = 5.
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Existence Proofs - 2
There exists irrational b,c, such that bc is 

rational (page 97)
Nonconstructive proof:
Consider 22. Two cases are possible:
• Case 1: 22  is rational – DONE (b = c = 2).
       
• Case 2: 22  is irrational – Let b = 22, c = 2.
                  Then bc = (22)2 = (2)2*2 = (2)2 = 2

68EECS 1019, Fall 2014

Uniqueness proofs
• E.g. the equation ax+b=0, a,b real, a0 

has a unique solution.
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The Use of Counterexamples
All prime numbers are odd

Every prime number can be written as the 
difference of two squares, i.e. a2 – b2.
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Examples
• Show that if n is an odd integer, there is 

a unique integer k such that n is the 
sum of k-2 and k+3.

• Prove that there are no solutions in 
positive integers x and y to the equation 
2x2 + 5y2 = 14.

• If x3 is irrational then x is irrational
• Prove or disprove – if x, y are irrational, 

x + y is irrational.
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Alternative problem statements

•  “show A is true if and only if B is true”
• “show that the statements A,B,C are 

equivalent”
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Exercises
• Q8, 10, 26, 28 on page 91
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What can we prove?
• The statement must be true
• We must construct a valid proof
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The role of conjectures
• 3x+1 conjecture
   Game: Start from a given integer n. If n is 

even, replace n by n/2. If n is odd, replace 
n with 3n+1. Keep doing this until you hit 1.

e.g. n=5  16  8  4  2  1
Q: Does this game terminate for all n?
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Elegance in proofs
Q: Prove that the only pair of positive 

integers satisfying a+b=ab is (2,2).

• Many different proofs exist. What is the 
simplest one you can think of?
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Next
Ch. 2: Introduction to Set Theory
• Set operations
• Functions
• Cardinality


