Math/EECS 1019C: Discrete Mathematics for Computer Science

Fall 2014

Suprakash Datta

datta@cse.yorku.ca

Office: CSEB 3043

Phone: 416-736-2100 ext 77875

Course page: http://www.eecs.yorku.ca/course/1019

EECS 1019, Fall 2014

1

Administrivia

Lectures: Mon 7 - 10 pm (CLH A)

Exams: 3 tests, 15% each*(35%),

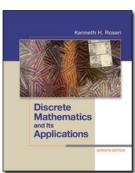
final (40%)

Homework (25%): equally divided between several assignments.

Slides: should be available after the class

Office hours: Wed 4-6 pm or by appointment at CSEB 3043.

Textbook:



Kenneth H. Rosen.

Discrete Mathematics
and Its Applications,
7th Edition. McGraw
Hill, 2012.

EECS 1019, Fall 2014

Administrivia - contd.

- Cheating will not be tolerated. Visit the class webpage for more details on policies.
- TA: Tutorials/office hours TBA.
- HW submitted late will not be graded.

EECS 1019, Fall 2014

- 3

Course objectives

We will focus on two major goals:

- Basic tools and techniques in discrete mathematics
 - Propositional logic
 - Set Theory, Functions and Relations
 - Simple algorithms
 - Induction, recursion
 - Sums
 - Introductory Graph Theory
- Precise and rigorous mathematical reasoning
 - Writing proofs

EECS 1019, Fall 2014

To do well you should:

- Study with pen and paper
- Ask for help early
- Practice, practice, practice...
- Follow along in class rather than take notes
- · Ask questions in class or outside class
- Keep up with the class
- Read the book, not just the slides

EECS 1019, Fall 2014

5

Mathematical Reasoning

- What is Mathematics?
 - Mathematics as a precise language
- Motivation (for EECS)
 - Making precise, rigorous claims
- Procedure
 - Axioms
 - Inference
 - Facts/Theorems

EECS 1019, Fall 2014

Examples of reasoning about problems

- There exists integers a,b,c that satisfy the equation a²+b² = c²
- The program that I wrote works correctly for all possible inputs.....
- The program that I wrote never hangs (i.e. always terminates)...

EECS 1019, Fall 2014

7

Tools for reasoning: Logic

Ch. 1: Introduction to Propositional Logic

- Truth values, truth tables
- Boolean logic: ∨ ∧ ¬
- Implications: → ↔

EECS 1019, Fall 2014

Why study propositional logic?

- A formal mathematical "language" for precise reasoning.
- Start with propositions.
- Add other constructs like negation, conjunction, disjunction, implication etc.
- All of these are based on ideas we use daily to reason about things.

EECS 1019, Fall 2014

9

Propositions

- Declarative sentence
- Must be either True or False.

Propositions:

- · York University is in Toronto
- · York University is in downtown Toronto
- All students at York are Computer Sci. majors

Not propositions:

- Do you like this class?
- There are x students in this class.

EECS 1019, Fall 2014

Propositions - 2

• Truth value: True or False

• Variables: p,q,r,s,...

Negation:

• ¬p ("not p")

Truth tables

р	¬р
Т	F
F	Т

EECS 1019, Fall 2014

11

Caveat: negating propositions

¬p: "it is not the case that p is true"

p: "it rained more than 20 inches in TO"

p: "John has many iPads"

Practice: Questions 1-7 page 12.

Q10 (a) p: "the election is decided"

EECS 1019, Fall 2014

Conjunction, Disjunction

• Conjunction: p ∧ q ["and"]

• Disjunction: p ∨ q ["or"]

р	q	p ^ q	$p \vee q$
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	F

EECS 1019, Fall 2014

13

Examples

Q11, page 13

p: It is below freezing

q: It is snowing

- (a) It is below freezing and snowing
- (b) It is below freezing but not snowing
- (d) It is either snowing or below freezing (or both)

EECS 1019, Fall 2014

Exclusive OR (XOR)

- p ⊕ q T if p and q have different truth values, F otherwise
- Colloquially, we often use OR ambiguously – "an entrée comes with soup or salad" implies XOR, but "students can take MATH XXXX if they have taken MATH 2320 or MATH 1019" usually means the normal OR (so a student who has taken both is still eligible for MATH XXXX).

EECS 1019, Fall 2014

15

Conditional

- $p \rightarrow q$ ["if p then q"]
- p: hypothesis, q: conclusion
- E.g.: "If you turn in a homework late, it will not be graded"; "If you get 100% in this course, you will get an A+".
- TRICKY: Is p → q TRUE if p is FALSE?
 YES!!
- Think of "If you get 100% in this course, you will get an A+" as a promise – is the promise violated if someone gets 50% and does not receive an A+?

EECS 1019, Fall 2014

Conditional - 2

- $p \rightarrow q$ ["if p then q"]
- Truth table:

р	q	$p \rightarrow q$	$\neg p \lor q$
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

Note the truth table of $\neg p \lor q$

17

Logical Equivalence

- $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent
- Truth tables are the simplest way to prove such facts.
- · We will learn other ways later.

EECS 1019, Fall 2014

Contrapositive

- Contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$
- Any conditional and its contrapositive are logically equivalent (have the same truth table) – Check by writing down the truth table.
- E.g. The contrapositive of "If you get 100% in this course, you will get an A+" is "If you do not get an A+ in this course, you did not get 100%".

EECS 1019, Fall 2014

19

E.g.: Proof using contrapositive

Prove: If x2 is even, x is even

- Proof 1: x² = 2a for some integer a.
 Since 2 is prime, 2 must divide x.
- Proof 2: if x is not even, x is odd. Therefore x² is odd. This is the contrapositive of the original assertion.

EECS 1019, Fall 2014

Converse

- Converse of $p \rightarrow q$ is $q \rightarrow p$
- Not logically equivalent to conditional
- Ex 1: "If you get 100% in this course, you will get an A+" and "If you get an A+ in this course, you scored 100%" are not equivalent.
- Ex 2: If you won the lottery, you are rich.

EECS 1019, Fall 2014

21

Other conditionals

Inverse:

- inverse of $p \rightarrow q$ is $\neg p \rightarrow \neg q$
- · How is this related to the converse?

Biconditional:

- "If and only if"
- True if p,q have same truth values, false otherwise. Q: How is this related to XOR?
- Can also be defined as (p → q) ∧ (q → p)

EECS 1019, Fall 2014

Example

Q16c, page 14:1+1=3 if and only if monkeys can fly.

EECS 1019, Fall 2014

23

Readings and notes

- Read pages 1-12.
- Think about the notion of truth tables.
- Master the rationale behind the definition of conditionals.
- Practice translating English sentences to propositional logic statements.

EECS 1019, Fall 2014

Next

Ch. 1.2, 1.3: Propositional Logic - contd

- Compound propositions, precedence rules
- Tautologies and logical equivalences
- Read only the first section called "Translating English Sentences" in 1.2.

EECS 1019, Fall 2014

25

Compound Propositions

- Example: p ∧ q ∨ r : Could be interpreted as (p ∧ q) ∨ r or p ∧ (q ∨ r)
- precedence order: ¬ ∧ ∨ → ↔ (IMP!)
 (Overruled by brackets)
- We use this order to compute truth values of compound propositions.

EECS 1019, Fall 2014

Tautology

- A compound proposition that is always TRUE, e.g. q ∨ ¬q
- Logical equivalence redefined: p,q are logical equivalences if p ↔ q is a tautology. Symbolically p ≡ q.
- Intuition: p ↔ q is true precisely when p,q have the same truth values.

EECS 1019, Fall 2014

27

Manipulating Propositions

- Compound propositions can be simplified by using simple rules.
- Read page 25 28.
- Some are obvious, e.g. Identity, Domination, Idempotence, double negation, commutativity, associativity
- Less obvious: Distributive, De Morgan's laws, Absorption

EECS 1019, Fall 2014

Distributive Laws

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

Intuition (not a proof!) – For the LHS to be true: p must be true and q or r must be true. This is the same as saying p and q must be true or p and r must be true.

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Intuition (less obvious) – For the LHS to be true: p must be true or both q and r must be true. This is the same as saying p or q must be true and p or r must be true.

Proof: use truth tables.

EECS 1019, Fall 2014

29

De Morgan's Laws

$$\neg (q \lor r) \equiv \neg q \land \neg r$$

Intuition – For the LHS to be true: neither q nor r can be true. This is the same as saying q and r must be false.

$$\neg (q \land r) \equiv \neg q \lor \neg r$$

Intuition – For the LHS to be true: $q \wedge r$ must be false. This is the same as saying q or r must be false.

Proof: use truth tables.

EECS 1019, Fall 2014

Using the laws

- Q: Is $p \rightarrow (p \rightarrow q)$ a tautology?
- · Can use truth tables
- Can write a compound proposition and simplify

EECS 1019, Fall 2014

31

Inference in Propositional Logic

- in Section 1.6 pages 71-75
- Recall: the reason for studying logic was to formalize derivations and proofs.
- · How can we infer facts using logic?
- Simple inference rule (Modus Ponens):
 From (a) p → q and (b) p is TRUE,
 we can infer that q is TRUE.

EECS 1019, Fall 2014

Modus Ponens continued

Example:

- (a) if these lecture slides (ppt) are online then you can print them out
- (b) these lecture slides are online

Can you print out the slides?

 Similarly, From p → q, q → r and p is TRUE, we can infer that r is TRUE.

EECS 1019, Fall 2014

33

Inference rules - continued

- $((p \rightarrow q) \land p) \rightarrow q$ is a TAUTOLOGY.
- Modus Tollens, Hypothetical syllogism and disjunctive syllogism can be seen as alternative forms of Modus Ponens
- Other rules like

"From p is true we can infer $p \vee q$ " are very intuitive

EECS 1019, Fall 2014

Inference rules - continued

Resolution: From

(a)
$$p \vee q$$
 and

(b)
$$\neg$$
 p \vee r, we can infer that $q \vee r$

Exercise: check that

$$((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$$
 is a TAUTOLOGY.

Very useful in computer generated proofs.

EECS 1019, Fall 2014

35

Inference rules - continued

- Read rules on page 72.
- Understanding the rules is crucial, memorizing is not.
- You should be able to see that the rules make sense and correspond to our intuition about formal reasoning.

EECS 1019, Fall 2014

Limitations of Propositional Logic

What can we NOT express using predicates?

Ex: How do you make a statement about all even integers?

If x > 2 then $x^2 > 4$

 A more general language: Predicate logic (Sec 1.4)

EECS 1019, Fall 2014

37

Next: Predicate Logic

Ch 1.4

- -Predicates and quantifiers
- -Rules of Inference

EECS 1019, Fall 2014

Predicate Logic

- A predicate is a proposition that is a function of one or more variables.
 - E.g.: P(x): x is an even number. So P(1) is false, P(2) is true,....
- Examples of predicates:
 - Domain ASCII characters IsAlpha(x):
 TRUE iff x is an alphabetical character.
 - Domain floating point numbers IsInt(x):
 TRUE iff x is an integer.
 - Domain integers: Prime(x) TRUE if x is prime, FALSE otherwise.

EECS 1019, Fall 2014

39

Quantifiers

- describes the values of a variable that make the predicate true. E.g. ∃x P(x)
- Domain or universe: set of values taken by a variable (sometimes implicit)

EECS 1019, Fall 2014

Two Popular Quantifiers

- Universal: ∀x P(x) "P(x) for all x in the domain"
- Existential: ∃x P(x) "P(x) for some x in the domain" or "there exists x such that P(x) is TRUE".
- Either is meaningless if the domain is not known/specified.
- Examples (domain real numbers)
 - $\forall x (x^2 \ge 0)$
 - $-\exists x (x > 1)$
 - $-(\forall x>1) (x^2>x)$ quantifier with restricted domain

EECS 1019, Fall 2014

41

Using Quantifiers

Domain integers:

 Using implications: The cube of all negative integers is negative.

$$\forall x (x < 0) \rightarrow (x^3 < 0)$$

Expressing sums :

$$\forall n \stackrel{n}{(\sum_{i=1}^{n} i = n(n+1)/2)}$$

Aside: summation notation

EECS 1019, Fall 2014

Scope of Quantifiers

- ∀∃ have higher precedence than operators from Propositional Logic; so ∀x P(x) ∨ Q(x) is not logically equivalent to ∀x (P(x) ∨ Q(x))
- $\exists x (P(x) \land Q(x)) \lor \forall x R(x)$

Say P(x): x is odd, Q(x): x is divisible by 3, R(x): $(x=0) \lor (2x > x)$

 Logical Equivalence: P = Q iff they have same truth value no matter which domain is used and no matter which predicates are assigned to predicate variables.

EECS 1019, Fall 2014

43

Negation of Quantifiers

- "There is no student who can ..."
- "Not all professors are bad...."
- "There is no Toronto Raptor that can dunk like Vince ..."
- $\neg \forall x P(x) \equiv \exists x \neg P(x) \text{ why?}$
- $\neg \exists x P(x) \equiv \forall x \neg P(x)$
- Careful: The negation of "Every Canadian loves Hockey" is NOT "No Canadian loves Hockey"! Many, many students make this mistake!

EECS 1019, Fall 2014

Nested Quantifiers

- Allows simultaneous quantification of many variables.
- E.g. domain integers,
 - $-\exists x \exists y \exists z x^2 + y^2 = z^2$ (Pythagorean triples)
 - \forall n \exists x \exists y \exists z xⁿ + yⁿ = zⁿ (Fermat's Last Theorem implies this is false)
- Domain real numbers:
 - $\forall x \forall y \exists z (x < z < y) \lor (y < z < x)$ Is this true?
 - $\forall x \forall y \exists z (x=y) \lor (x < z < y) \lor (y < z < x)$
 - $\forall x \ \forall y \ \exists z \ (x \neq y) \rightarrow (x < z < y) \lor (y < z < x)$

EECS 1019, Fall 2014

45

Nested Quantifiers - 2

 $\forall x \exists y (x + y = 0)$ is true over the integers

- Assume an arbitrary integer x.
- To show that there exists a y that satisfies the requirement of the predicate, choose y = -x. Clearly y is an integer, and thus is in the domain.
- So x + y = x + (-x) = x x = 0.
- Since we assumed nothing about x (other than it is an integer), the argument holds for any integer x.
- Therefore, the predicate is TRUE.

EECS 1019, Fall 2014

Nested Quantifiers - 3

 Analogy: quantifiers are like loops:
 An inner quantified variable can depend on the outer quantified variable.

E.g. in $\forall x \exists y (x + y = 0)$ we chose y=-x, so for different x we need different y to satisfy the statement.

∀p ∃j Accept (p,j) p,j have different domains does NOT say that there is a j that will accept all p.

EECS 1019, Fall 2014

47

Nested Quantifiers - 4

- Caution: In general, order matters!
 Consider the following propositions over the integer domain:
 - $\forall x \exists y (x < y) \text{ and } \exists y \forall x (x < y)$
- ∀x ∃y (x < y) : "there is no maximum integer"
- ∃y ∀x (x < y) : "there is a maximum integer"
- Not the same meaning at all!!!

EECS 1019, Fall 2014

Negation of Nested Quantifiers

- Use the same rule as before carefully.
- Ex 1: $\neg \exists x \forall y (x + y = 0)$
 - This is equivalent to $\forall x \neg \forall y (x + y = 0)$
 - This is equivalent to $\forall x \exists y \neg (x + y = 0)$
 - This is equivalent to $\forall x \exists y (x + y \neq 0)$
- Ex 2:¬ ∀x ∃y (x < y)
 - This is equivalent to $\exists x \neg \exists y (x < y)$
 - This is equivalent to $\exists x \forall y \neg (x < y)$
 - This is equivalent to $\exists x \forall y (x \ge y)$

EECS 1019, Fall 2014

49

Exercises

Check that:

- $\forall x \exists y (x + y = 0)$ is not true over the positive integers.
- ∃x ∀y (x + y = 0) is not true over the integers.
- ∀x <>0 ∃y (y = 1/x) is true over the real numbers.

EECS 1019, Fall 2014

Readings and notes

- Read 1.4-1.5.
- Practice: Q2,8,16,30 (pg 65-67)
- Next: Rules of inference for quantified statements (1.6).

EECS 1019, Fall 2014

51

Inference rules for quantified statements

- Very intuitive, e.g. Universal instantiation –
 If ∀x P(x) is true, we infer that P(a) is true for any given a
- E.g.: Universal Modus Ponens:
 ∀x P(x) → Q(x) and P(a) imply Q(a)
 If x is odd then x² is odd, a is odd. So a² is odd.
- Read rules on page 76
- Again, understanding is required, memorization is not.

EECS 1019, Fall 2014

Commonly used technique: Universal generalization

Prove: If x is even, x+2 is even

• Proof:

Prove: If x² is even, x is even [Note that the problem is to prove an implication.]

 Proof: if x is not even, x is odd. Therefore x² is odd. This is the contrapositive of the original assertion.

EECS 1019, Fall 2014

53

Aside: Inference and Planning

- The steps in an inference are useful for planning an action.
- Example: your professor has assigned reading from an out-of-print book. How do you do it?
- Example 2: you are participating in the television show "Amazing race". How do you play?

EECS 1019, Fall 2014

Aside 2: Inference and Automatic Theorem-Proving

- The steps in an inference are useful for proving assertions from axioms and facts.
- Why is it important for computers to prove theorems?
 - Proving program-correctness
 - Hardware design
 - Data mining

—

EECS 1019, Fall 2014

55

Aside 3: Inference and Automatic Theorem-Proving

- Sometimes the steps of an inference (proof) are useful. E.g. on Amazon book recommendations are made.
- You can ask why they recommended a certain book to you (reasoning).

EECS 1019, Fall 2014

Next

- Introduction to Proofs (Sec 1.7)
- What is a (valid) proof?
- Why are proofs necessary?

EECS 1019, Fall 2014

57

Introduction to Proof techniques

Why are proofs necessary?

What is a (valid) proof?

What details do you include/skip? "Obviously", "clearly"...

EECS 1019, Fall 2014

Assertions

- Axioms
- Proposition, Lemma, Theorem
- Corollary
- Conjecture

EECS 1019, Fall 2014

59

Types of Proofs

- Direct proofs (including Proof by cases)
- Proof by contraposition
- Proof by contradiction
- Proof by construction
- Proof by Induction
- Other techniques

EECS 1019, Fall 2014

Direct Proofs

- The average of any two primes greater than 2 is an integer.
- Every prime number greater than 2 can be written as the difference of two squares, i.e. a² – b².

EECS 1019, Fall 2014

61

Proof by cases

If n is an integer, then n(n+1)/2 is an integer

- · Case 1: n is even.
 - or n = 2a, for some integer a So n(n+1)/2 = 2a*(n+1)/2 = a*(n+1), which is an integer.
- Case 2: n is odd.

n+1 is even, or n+1=2a, for an integer a So n(n+1)/2 = n*2a/2 = n*a, which is an integer.

EECS 1019, Fall 2014

Proof by contraposition

If $\sqrt{(pq)} \neq (p+q)/2$, then $p \neq q$

Direct proof left as exercise

Contrapositive:

If p = q, then $\sqrt{(pq)} = (p+q)/2$

Easy:

 $\sqrt{(pq)} = \sqrt{(pp)} = \sqrt{(p^2)} = p = (p+p)/2 = (p+q)/2.$

EECS 1019, Fall 2014

63

Proof by Contradiction

$\sqrt{2}$ is irrational

• Suppose $\sqrt{2}$ is rational. Then $\sqrt{2}$ = p/q, such that p, q have no common factors.

Squaring and transposing,

 $p^2 = 2q^2$ (even number)

So, p is even (previous slide)

Or p = 2x for some integer x

So $4x^2 = 2q^2$ or $q^2 = 2x^2$

So, q is even (previous slide)

So, p,q are both even – they have a common factor of 2. CONTRADICTION

factor of 2. CONTRADICTION.

So $\sqrt{2}$ is NOT rational.

Q.E.D.

EECS 1019, Fall 2014

Proof by Contradiction - 2

In general, start with an assumption that statement A is true. Then, using standard inference procedures infer that A is false. This is the contradiction.

Recall: for any proposition p, p $\land \neg p$ must be false

EECS 1019, Fall 2014

65

Existence Proofs

There exists integers x,y,z satisfying $x^2+y^2=z^2$

Proof: x = 3, y = 4, z = 5.

EECS 1019, Fall 2014

Existence Proofs - 2

There exists irrational b,c, such that b^c is rational (page 97)

Nonconstructive proof:

Consider $\sqrt{2^{1/2}}$. Two cases are possible:

- Case 1: $\sqrt{2^{1/2}}$ is rational DONE (b = c = $\sqrt{2}$).
- Case 2: $\sqrt{2^{\sqrt{2}}}$ is **irrational** Let b = $\sqrt{2^{\sqrt{2}}}$, c = $\sqrt{2}$. Then b^c = $(\sqrt{2^{\sqrt{2}}})^{\sqrt{2}} = (\sqrt{2})^{\sqrt{2}*\sqrt{2}} = (\sqrt{2})^2 = 2$

EECS 1019, Fall 2014

67

Uniqueness proofs

• E.g. the equation ax+b=0, a,b real, a≠0 has a unique solution.

EECS 1019, Fall 2014

The Use of Counterexamples

All prime numbers are odd

Every prime number can be written as the difference of two squares, i.e. $a^2 - b^2$.

EECS 1019, Fall 2014

69

Examples

- Show that if n is an odd integer, there is a unique integer k such that n is the sum of k-2 and k+3.
- Prove that there are no solutions in positive integers x and y to the equation $2x^2 + 5y^2 = 14$.
- If x³ is irrational then x is irrational
- Prove or disprove if x, y are irrational, x + y is irrational.

EECS 1019, Fall 2014

Alternative problem statements

- "show A is true if and only if B is true"
- "show that the statements A,B,C are equivalent"

EECS 1019, Fall 2014

71

Exercises

• Q8, 10, 26, 28 on page 91

EECS 1019, Fall 2014

What can we prove?

- The statement must be true
- We must construct a valid proof

EECS 1019, Fall 2014

73

The role of conjectures

• 3x+1 conjecture

Game: Start from a given integer n. If n is even, replace n by n/2. If n is odd, replace n with 3n+1. Keep doing this until you hit 1.

e.g.
$$n=5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Q: Does this game terminate for all n?

EECS 1019, Fall 2014

Elegance in proofs

Q: Prove that the only pair of positive integers satisfying a+b=ab is (2,2).

 Many different proofs exist. What is the simplest one you can think of?

EECS 1019, Fall 2014

75

Next

Ch. 2: Introduction to Set Theory

- Set operations
- Functions
- Cardinality

EECS 1019, Fall 2014