
CSE 4431/5331.03M
 Advanced Topics in 3D Computer Graphics

TA: Margarita Vinnikov
mvinni@cse.yorku.ca

 Goals of any 3d application is speed.
 You should always limit the amount of polygons

actually rendered
 by sorting, culling, or level-of-detail algorithms.
 when all else fails

 Vertex Arrays are one good way to do that,
 Vertex Buffer Objects

 works just like vertex arrays, except that it loads the data into
the graphics card's high-performance memory, significantly
lowering rendering time

 The extension being relatively new, not all cards will support it
 Either use ARB
 Glew library

Setup Glew and FreeImage
 Download

 Glew from http://glew.sourceforge.net/
 Free Image from http://freeimage.sourceforge.net/download.html

 Open your project folder and manually create a new folder named libraries
 Copy GLEW and FreeImage this folder.
 In VS now, select Properties.

 From the Configuration Properties-> C/C++ −> General-> Additional Include Directories
 Click on Additional Include Directories and select Edit.
 A new menu will pop that will allow you to insert the locations of the header files, press the New

Line button and browse for the location of GLEW, click on the library folder and select include.
 Repeat for FreeImage.

 Now, select Linker −> General −> Additional Library Directories, chose Edit and add, like
before, the location of the binary libraries for GLEW and FreeImage.

 Select Linker −> Input −> Additional Dependencies, chose Edit and add the names of the three
binary libraries, one per lines:
 glew32.lib,
 FreeImage.lib
 Windows opengl32.lib.

 You could press the F7 key or select BUILD −> Build Solution.
 If you’ve correctly executed the above steps the build should be successful.

 Copy FreeImage.dll and glew32.dll in the Debug folder from your project folder.
 From http://solarianprogrammer.com/2013/05/10/opengl-101-windows-osx-linux-getting-

started

Presenter
Presentation Notes
step 1. Create the directory in project directory lets assume directory name is "thirdparty"step 2. copy and past the glew-1.9.0 library folder in directory thirdpartystep 3. Now goto the Menu Project->(projectName)properties.. or press Alt + F7. You will see project properties window.step 4. goto Congiguration Properties-> VC++ Directories option. From there on right side give the path of glew library. In Include Directories give path: $(ProjectDir)thirdparty\glew-1.9.0\include; In Library Directories give path: $(ProjectDir)thirdparty\glew-1.9.0\lib;Now follow follow last step for linking.step 5. goto linker->Input option. Link glew32.dll.In Additional Dependencies: glew32.dll;

http://glew.sourceforge.net/
http://freeimage.sourceforge.net/download.html
http://solarianprogrammer.com/2013/05/10/opengl-101-windows-osx-linux-getting-started/
http://solarianprogrammer.com/2013/05/10/opengl-101-windows-osx-linux-getting-started/

Glew (usage)
#include <GL/glew.h>
#include <GLUT/glut.h> // not glew should be first

In main add the following:
glutInit(&argc, argv);
glutCreateWindow("GLEW Test");
GLenum err = glewInit();
if (GLEW_OK != err)
{
 /* Problem: glewInit failed, something is seriously wrong. */
 fprintf(stderr, "Error: %s\n",
 glewGetErrorString(err));
 ...
}
fprintf(stdout, "Status: Using GLEW %s\n",
glewGetString(GLEW_VERSION));

Vertex array
 Pro: reduces the number of

function calls
 Con: redundant usage of the

shared vertices
 functions are in the CPU and the

data in the arrays must be re-sent
to the server each time when it is
referenced.

Vertex buffer object
 can be read and updated by mapping the buffer

into client's memory space
 Allows vertex array data to be stored in high-

performance graphics memory on the server side
 Creates "buffer objects" for vertex attributes
 Provides same access functions to reference the

arrays, which are used in vertex arrays,
 such as

 glVertexPointer(), glNormalPointer(),
glTexCoordPointer(), etc.

• Memory buffer containing geometry data that is managed by the driver

• Providing the benefits of vertex array, while avoiding downsides of their

implementations

Declarations
 Same as before
//Vertices of a triangle

float data[] = {1.0, 0.0, 1.0,

 0.0, 0.0, -1.0,

 -1.0, 0.0, 1.0};

 Plus VBO reference
 GLuint triangleVBO;

Creating VBO

 Creating a VBO requires 3 steps (usually in init() after

glew initialization.
1. Generate a new buffer object with glGenBuffers().
2. Bind the buffer object with glBindBuffer().
3. Copy vertex data to the buffer object with

glBufferData().

Example
Initialization:
//Create a new VBO and use the variable id to store the VBO id

glGenBuffers(1, &triangleVBO);

//Make the new VBO active

 glBindBuffer(GL_ARRAY_BUFFER, triangleVBO);

//Upload vertex data to the video device
glBufferData(GL_ARRAY_BUFFER, sizeof(data), data, GL_STATIC_DRAW);

Clearing the memory:
// it is safe to delete after copying data to VBO

 delete [] vertices;

// deactivate VBO active

 glBindBuffer(GL_ARRAY_BUFFER, 0);

// delete VBO when program terminated

 glDeleteBuffers(1, &vboId);

Presenter
Presentation Notes
//to include normals and vertices in the same buffer //glBufferSubData(GL_ARRAY_BUFFER_ARB, 0, sizeof(vertices), vertices);//glBufferSubData(GL_ARRAY_BUFFER_ARB, sizeof(vertices), sizeof(normals), normals_rep);

glGenBuffers()

glDeleteBuffers()

void
glGenBuffers(GLsizei n,
 GLuint* ids)

 Creates buffer objects and returns
the identifiers of the buffer
objects.

 2 parameters:
 number of buffer objects to

create
 the address of a GLuint variable

or array to store a single ID or
multiple IDs.

 void

glDeleteBuffers(GLsizei n,
 const GLuint* ids)

• Can delete
• a single VBO
• multiple VBOs

• After a buffer object is deleted, its
contents will be lost.

glBindBuffer()
void glBindBuffer(GLenum target, GLuint id)

 Connects the buffer object with the corresponding ID
 VBO initializes the buffer with a zero-sized memory buffer and

set the initial VBO states, such as usage and access properties.

 Takes 2 parameters:

 Target - tells VBO whether this buffer object will
store vertex array data or index array data:
 GL_ARRAY_BUFFER

 Any vertex attributes, such as vertex coordinates, texture
coordinates, normals and color component arrays

 GL_ELEMENT_ARRAY_BUFFER
 Index array which is used for glDraw[Range]Elements()

 ID – the Id generated by glGenBuffers()

Presenter
Presentation Notes
Note that this target flag assists VBO to decide the most efficient locations of buffer objects, for example, some systems may prefer indices in AGP or system memory, and vertices in video memory.

glBufferData()
 void glBufferData(GLenum target, GLsizei size, const

void* data, GLenum usage)

 Copys the data into the buffer object
 Takes two parameters

 target would be GL_ARRAY_BUFFER or
GL_ELEMENT_ARRAY_BUFFER.

 Size is the number of bytes of data to transfer.
 Pointer to the array of source data.

 If data is NULL pointer, then VBO reserves only memory space
with the given data size.

 Usage flag hints for VBO to provide how the buffer object is going
to be used:
 static, dynamic or stream, and read, copy or draw.

 VBO specifies 9 enumerated values for usage flags;
 GL_STATIC_DRAW - GL_STATIC_READ - GL_STATIC_COPY
 GL_DYNAMIC_DRAW - GL_DYNAMIC_READ - GL_DYNAMIC_COPY
 GL_STREAM_DRAW - GL_STREAM_READ - GL_STREAM_COPY

Presenter
Presentation Notes
“static" means the data in VBO will not be changed (specified once and used many times), "dynamic" means the data will be changed frequently (specified and used repeatedly), "stream" means the data will be changed every frame (specified once and used once). “draw" means the data will be sent to GPU in order to draw (application to GL), "read" means the data will be read by the client's application (GL to application), "copy" means the data will be used both drawing and reading (GL to GL). Note that only draw token is useful for VBO, and copy and read token will be become meaningful only for pixel/frame buffer object (PBO or FBO). VBO memory manager will choose the best memory places for the buffer object based on these usage flags, for example, GL_STATIC_DRAW_ARB and GL_STREAM_DRAW_ARB may use video memory, and GL_DYNAMIC_DRAW_ARB may use AGP memory. Any _READ_ related buffers would be fine in system or AGP memory because the data should be easy to access.

glBufferSubData()
 void glBufferSubData(GLenum target, GLint offset, GLsizei size, void* data)

 Like glBufferData(), glBufferSubData() is used to copy data into
VBO, but it only replaces a range of data into the existing buffer,
starting from the given offset.

Presenter
Presentation Notes
(The total size of the buffer must be set by glBufferDataARB() before using glBufferSubDataARB().)

Example (Drawing and Updating)

// bind VBOs for vertex array and index array
glBindBuffer(GL_ARRAY_BUFFER, vboId);// for vertex coordinates
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboId1);// for indices (Don’t

forget to set it appropriately before hand)
// do same as vertex array except pointer

glEnableClientState(GL_VERTEX_ARRAY);

// activate vertex coords array

glVertexPointer(3, GL_FLOAT, 0, 0);// last param is offset, not ptr

// draw

//Actually draw the triangle, giving the number of vertices provided

glDrawArrays(GL_TRIANGLES, 0, sizeof(data) / sizeof(float) / 3);
glDrawElements(…);

glDisableClientState(GL_VERTEX_ARRAY);

// deactivate vertex array - bind with 0, so, switch back to normal
pointer operation

glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);

Presenter
Presentation Notes
Binding the buffer object with 0 switchs off VBO operation. It is a good idea to turn VBO off after use, so normal vertex array operations with absolute pointers will be re-activated.

Updating VBO

 To update VBO

 Copy new data into the bound VBO with
 glBufferData() or glBufferSubDataARB()
 should have a valid vertex array all the time

 Map the buffer object into client's memory, and the
client can update data with the pointer to the mapped
buffer.

Presenter
Presentation Notes
must always have 2 copies of vertex data: one in your application and the other in VBO.

glMapBufferARB()

void* glMapBufferGLenum(target,
GLenum access)

 Maps the buffer object into client's memory.
 If succesful

 glMapBuffer() returns the pointer to the buffer.
 Otherwise it returns NULL.

 Takes two parameters
 target is mentioned earlier at glBindBuffer()
 access flag specifies what to do with the mapped data: read, write or

both.
 GL_READ_ONLY_ARB
 GL_WRITE_ONLY_ARB
 GL_READ_WRITE_ARB

Presenter
Presentation Notes
Note that glMapBufferARB() causes a synchronizing issue. If GPU is still working with the buffer object, glMapBufferARB() will not return until GPU finishes its job with the corresponding buffer object. To avoid waiting (idle), you can call first glBufferDataARB() with NULL pointer, then call glMapBufferARB(). In this case, the previous data will be discarded and glMapBufferARB() returns a new allocated pointer immediately even if GPU is still working with the previous data. However, this method is valid only if you want to update entire data set because you discard the previous data. If you want to change only portion of data or to read data, you better not release the previous data.

glUnmapBuffer()

GLboolean glUnmapBuffer(GLenum target)

 Unmappes the buffer object from the client's memory.
 returns

 GL_TRUE if success
 GL_FALSE if the contents of VBO was corrupted while the

buffer was mapped.

Presenter
Presentation Notes
The corruption results from screen resolution change or window system specific events. In this case, the data must be resubmitted.

Example

// bind then map the VBO
glBindBufferARB(GL_ARRAY_BUFFER_ARB, vboId);

float* ptr =
(float*)glMapBufferARB(GL_ARRAY_BUFFER_ARB,GL_WRITE_ONLY_ARB);

// if the pointer is valid(mapped), update VBO
if(ptr)

{

 // modify buffer data

 updateMyVBO(ptr, ...);

 // unmap it after use

 glUnmapBufferARB(GL_ARRAY_BUFFER_ARB);

}

 // you can draw the updated VBO ...

VBO

 Note the current Frame Rate for your application
 Modify your code for vertex array to use VBO
 Use glew or ARB extensions (see complementary

instruction)
 Note the new Frame Rate for your application

Declaration
GLfloat texture_coord[6] = { 0.0, 0.0,
 0.0, 1.0,
 1.0, 1.0};
We could store the texture_coord in the same VBO that stores
the vertex_position array:
glBufferSubData(GL_ARRAY_BUFFER,
sizeof(vertices_position), sizeof(texture_coord),
texture_coord);

Also use

glTexCoordPointer(2,GL_FLOAT,0,NULL);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);

 Add texture to your figure
 Use FreeImage and provided texture wrapper
 Make sure you use VBO

 Bonus: Add multiple texture, toggle textures, blend

textures.

Light – on and off
 Add ambient light to the scene
 Add material to your figures
 Allow to toggle the light on and off with the ‘L’ key
Bonus:
 Rotate light source
 Make fancy light – different colors from different directions
Look for help:
http://www.videotutorialsrock.com/opengl_tutorial/lighting
/text.php
http://sjbaker.org/steve/omniv/opengl_lighting.html

http://www.videotutorialsrock.com/opengl_tutorial/lighting/text.php
http://www.videotutorialsrock.com/opengl_tutorial/lighting/text.php
http://sjbaker.org/steve/omniv/opengl_lighting.html

Links

http://www.songho.ca/opengl/gl_vbo.html

http://oss.sgi.com/projects/ogl-sample/registry/ARB/vertex_buffer_object.txt

http://en.wikipedia.org/wiki/Vertex_Buffer_Object

http://www.songho.ca/opengl/gl_vbo.html
http://oss.sgi.com/projects/ogl-sample/registry/ARB/vertex_buffer_object.txt
http://oss.sgi.com/projects/ogl-sample/registry/ARB/vertex_buffer_object.txt
http://oss.sgi.com/projects/ogl-sample/registry/ARB/vertex_buffer_object.txt
http://en.wikipedia.org/wiki/Vertex_Buffer_Object
http://en.wikipedia.org/wiki/Vertex_Buffer_Object

 Write you name and student
number in comments at the top
of your code

 Submit your entire project code
as follows:

 submit 4431 lab2 filename(s)

	Lab 2�Vertex Buffer Object �
	Vertex Buffer Arrays (VBOs)
	Slide Number 3
	Setup Glew and FreeImage
	Glew (usage)
	Slide Number 6
	Declarations
	Creating VBO�
	Example
	Slide Number 10
	glBindBuffer()
	glBufferData()�
	glBufferSubData()�
	Example (Drawing and Updating)
	Updating VBO�
	glMapBufferARB()
	glUnmapBuffer()
	Example
	First task�
	VBO
	Textures and VBO
	Slide Number 22
	Next Task�
	Slide Number 24
	Preparation for next week�
	Light – on and off
	Links
	Slide Number 28

