
CSE 4431/5331.03M
 Advanced Topics in 3D Computer Graphics

TA: Margarita Vinnikov
mvinni@cse.yorku.ca

Debugging Shaders
 Can't print a number from a shader, but you can "print" a colour,

 most of our value-checking is going to be by setting the fragment
shader outputs to a value that we want to test and then looking at it to
guess the number.

 The trick is to isolate each variable, and test one at a time. If you try
testing the whole thing you will pull your hair out and waste a lot of
time.

 This is the general process:
1. allow one variable to change value
2. make all other variables some constant value
3. work out the expected result on paper
4. check the value of the variable being tested to see if it matches

expected (paper) result
5. repeat process for next variable

 http://antongerdelan.net/opengl/debugshaders.html

Shading Models
 Flat shading

 compute a single colour value per triangle
 Gouraud shading

 compute the colour for the vertices of a triangle and
interpolate the colour values for points inside the
triangle

 Phong shading
 compute the colour for every surface point

Colour in Shaders
 diffuse: light reflected by an object in every direction. This

is what we commonly call the colour of an object.
 ambient: used to simulate bounced lighting. It fills the

areas where direct light can’t be found, thereby preventing
those areas from becoming too dark. Commonly this value
is proportional to the diffuse colour.

 specular: this is light that gets reflected more strongly in a
particular direction, commonly in the reflection of the
light direction vector around the surface’s normal. This
colour is not related to the diffuse colour.

 emissive: the object itself emits light.

Quiz Ambient

 Diffuse

 Specular

 Ambient + diffuse

 Point Light

 Spot Light

Lights
 Directional light

 all light rays are parallel, as if the light was placed infinitely far away,
and distance implied no attenuation. For instance, for all practical
purposes, for an observer on planet earth, the light that arrives from
the sun is directional. This implies that the light direction is
constant for all vertices and fragments, which makes this the easiest
type of light to implement.

 Point lights spread their rays in all directions, just like an
ordinary lamp, or even the sun if we were to model the solar
system.

 Spotlights are point lights that only emit light in a particular set
of directions. A common approach is to consider that the light
volume is a cone, with its apex at the light’s position. Hence, an
object will only be lit if it is inside the cone.

Diffuse Light

I0 is the reflected intensity,
Ld is the light's diffuse color
(gl_LightSource[0].diffuse),
Md is the material's diffuse coefficient
(gl_FrontMaterial.diffuse).

1. The normal vector and the light direction vector
(gl_LightSource[0].position) has to be normalized

2. Cos(θ) = lightDir . normal / (|lightDir| * |normal|)
3. We want gl_Normal and lightDir to be normalized

| normal | = 1 | lightDir | = 1

So that
Cos(θ) = lightDir . normal

4. OpenGL stores the lights direction in eye space
coordinates;

5. Need to transform the normal to eye space in order
to compute the dot product.

Eye Space
 To transform the normal to eye space use the

gl_NormalMatrix.
 This matrix is the transpose of the inverse of the 3x3

upper left sub matrix from the modelview matrix.
varying vec3 normal;

void main()

{

 normal = gl_NormalMatrix * gl_Normal;

 …;

}

Ambient Light

Ia is the ambient intensity,
Ma is the global ambent
(gl_LightModel.ambient)
La is the light's ambinent color
(gl_LightSource[0].ambient),
Ma is the material's ambient coefficient
(gl_FrontMaterial.ambient),

Specular Lights

Light Source Review
Vertex Color = emission + globalAmbient + sum(attenuation

* spotlight * lightAmbient + (max {L.N, 0} * diffuse) +
(max {H.N, 0} ^ shininess)*specular])

Terms Description

Emission is the material's emissive color

Global Ambient is the ambient color*global ambient brightness

Attenuation is a term causing lights to become dimmer with distance

Spotlight is a term causing spotlight effects

Ambient is the light's ambient color*brightness

Diffuse is the light's diffuse color * the material's diffuse color

Shininess

is the specular exponent, which tells us how shiny a surface is

Specular is the light's specular color * the material's specular color

L

is the normalised(unit length) vector from the vertex we are lighting to
the light

N is the unit length normal to our vertex

H is the normalised "half angle" vector, which points half way between L
and the viewer (V)

Your Turn
 Follow instructions attached (Lab 3), implement light

shaders
 Bonus: create an interesting light shader

Spotlights
 Shine a light in one specific direction.

 It still comes from a specific point in space though.
 In the real world we would just stick the light source in a cone so that it only shines one way,
 Not actually calculating light rays in our GPU - do it in a computationally inexpensive way.

1. Define a direction for the light (normal)
vec3 spot_dir_eye = normalize (target_position_eye - light_position_eye);
float spot_dot = dot (spot_dir_eye, dir_to_surface_eye);
const float spot_arc = 1.0 - 5.0 / 90.0;
float spot_factor = 1.0;

if (spot_dot < spot_arc) {
 spot_factor = 0.0;
}
...

diffuse_light *= spot_factor;
speculat_light *= spot_factor;

http://antongerdelan.net/opengl/lights.html
http://www.lighthouse3d.com/tutorials/glsl-core-tutorial/spotlights/

Attenuation

 Basic spotlight calculation will give us a uniform circle of light
on a surface if we use it to factor our diffuse and specular light
components.
 What if we want a roll-off or attenuation from centre to edge instead?

 Need to make ure that the value stays between 0 and 1 by using
the clamp() function.

float spot_factor = (spot_dot - spot_arc) / (1.0 - spot_arc);
spot_factor = clamp (spot_factor, 0.0, 1.0);

Texture
 In order to perform texturing operations in GLSL need to

access the texture coordinates per vertex.
 GLSL provides some attribute variables, one for each texture

unit:
attribute vec4 gl_MultiTexCoord0;
…
attribute vec4 gl_MultiTexCoord7;

 GLSL also provides access to the texture matrices for each
texture unit in an uniform array.
 uniform mat4 gl_TextureMatrix[gl_MaxTextureCoords];

http://www.lighthouse3d.com/opengl/glsl/index.php?oglattribute
http://www.lighthouse3d.com/opengl/glsl/index.php?ogluniform

Vertex shader
 Has access to the attributes defined above to get the texture

coordinates specified in the OpenGL application.
 Has to compute the texture coordinate for the vertex

 store it in the pre defined varying variable gl_TexCoord[i],
 where i indicates the texture unit.

 Example :
void main()
{
 gl_TexCoord[0] = gl_MultiTexCoord0;
 gl_Position = ftransform();
}

 To use the texture matrix :
void main() {
 gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
 gl_Position = ftransform();
 }

Fragment Shader
 In gl_TexCoord is a varying variable

 used in the fragment shader to access the interpolated texture coordinate.
 Need to declare a special type of variable.

 sampleriD,
 where i is the dimensionality of the texture.
 uniform sampler2D tex;
 The user defined tex variable contains the texture unit we are going to use, in this case 0.
 The function that gives a texel,

 a pixel in the texture image, is texture2D.
 This function receives a sampler2D, the texture coordinates, and it returns the texel value.
 The signature is as follows: vec4 texture2D(sampler2D, vec2);
 The returned value takes into account all the texture settings as defined in the OpenGL

application, for instance the filtering, mipmap, clamp, etc...
 Example

uniform sampler2D tex;
void main()
{
 vec4 color = texture2D(tex,gl_TexCoord[0].st);
 gl_FragColor = color;
}

 When accessing texture coordinates use s,t,p,q.
 Note that r is not used to avoid conlficts with rgb selectors

OpenGL 3.x and 4.x
 Texturing:

http://lwjgl.org/wiki/index.php?title=The_Quad_textured
 VBO

 GLuint positionIndex = 0;
GLuint texcoordIndex = 1;
glUseProgram(programId);
glBindAttribLocation(programId, positionIndex, "position");
glBindAttribLocation(programId, texcoordIndex, "texcoord");

 //Then before your glDraw*()

 glEnableVertexAttribArray(positionIndex);
glEnableVertexAttribArray(texcoordIndex);

 http://www.opengl.org/wiki/Vertex_Specification#Vertex_Ar
ray_Object

 http://en.wikipedia.org/wiki/Vertex_Buffer_Object

http://lwjgl.org/wiki/index.php?title=The_Quad_textured
http://www.opengl.org/wiki/Vertex_Specification#Vertex_Array_Object
http://www.opengl.org/wiki/Vertex_Specification#Vertex_Array_Object

Your Turn
 Pass texture and display it in black an white

 Bonus: you can turn texture to grayscale or sepia:

 For example:
 // Convert to grayscale using NTSC conversion weights
 gray =dot(txt.rgb, vec3(0.299, 0.587, 0.114));
 sepia = vec4(gray * vec3(1.2, 1.0, 0.8), 1.0);

 Bonus: use texture to pass information about lighting coeffiecients

 http://antongerdelan.net/opengl/phongtextures.html

 Bonus: use texture to discard fragments
 See the following link for example

 http://www.opengl.org/sdk/docs/tutorials/ClockworkCoders/discard.php

http://antongerdelan.net/opengl/phongtextures.html
http://antongerdelan.net/opengl/phongtextures.html
http://www.opengl.org/sdk/docs/tutorials/ClockworkCoders/discard.php
http://www.opengl.org/sdk/docs/tutorials/ClockworkCoders/discard.php

Putting it all together

Bump Mapping
“A rendering technique that simulates the appearance of bumps,
wrinkles, or surface irregularities by perturbation surface narmals
to performing lighting calculations” (orange book)

 Modulating the surface normals before the lighting is
applied

 Increasing realism without increasing geometric
complexity

 Simulates surface irregularities
 Will not show on the silhouette edges
 To apply small effects
 Main work will be done in fragment shader

Need
 Valid surface normals at each fragment location
 Light source
 Viewing direction vector

Coordinate Spaces

Surface Local Coordinate Space
(Tangent Space)
 Varies over a rendered object
 Each point is at (0,0,0) and the

unpertubrated surface normal is
(0,0,1)

 Converted:
1. Light direction
2. Viewing direction
3. Computed pertubrated normal

 Need to construct transformation
matrix at each vertex

 How?

Why use tangent space?
Why not declare all in world space?
 Many per pixel lighting techniques and other shaders require normals

and other height information declared at each pixel point.
 Need to have one normal vector at each texel and the n axis will vary for

each texel
 Like a bumpy surface defined on a flat plane.

 If these normals were declared in the world space coordinate system ->
need to rotate these normals every time the model is rotated
 Lights, camera and other objects will be defined in world space and will move

independent of the object.
 This would mean thousands or even millions of object to world matrix

transformations will need to take place at the pixel level
 Instead of

 converting thousand or millions of surface normals to world space
 convert tens or hundreds of light/camera/vertex positions to tangent

space and do all our calculations in tangent space as required
 the matrices required for the transformations can be pre calculated.
 They only need to be recalculated when the positions of the vertices

change with respect to each other.

Deriving world to tangent space
transformation matrix

(
Tx Ty Tz

) Mwt= Bx By Bz

 Nx Ny Nz

1. Define u, v and n basis vectors in terms of the world space coordinate system.
 Refer to the u, v, n vectors as the Tangent (T), Bi-Normal(B) and Normal (N).

Point in tangent space (Posts) :

 Pts = Pws X Mwt

• T, B, N vectors (and all basis vectors) will always be at right angles to each other.

• All we need to do is derive any two vectors
• The third will be a cross product of the previous two.

Creating the tangent space matrix for a face

Vertex Position
(x, y, z)

Texture
coordina
te (u, v)

V1 (0, 20, 0) (0, 0)

V2 (20, 20, 0) (1, 0)

V3 (0, 0, 0) (0, 1)

 Step 1: Calculate any two edge vectors.
 E2-1 = V2 - V1 = (20-0, 20-20, 0-0) & (1-0, 0-0) = (20, 0, 0) & (1, 0)

E3-1 = V3 - V1 = (0-0, 0-20, 0-0) & (0-0, 1-0) = (0, -20, 0) & (0, 0)

 Step 2: Calculate the T vector
 T = E2-1.xyz / E2-1.u = (20/1 , 0/1 , 0/1) = (20, 0, 0)
 T = Normalize(T) = (1, 0, 0)
 Note: If the value of E2-1.u value is 0, then we perform the same

calculation on E3-1. It does not matter which edge we use, all we are
looking for is the direction of increasing u component across the face.

Creating the tangent space matrix for a face 2

 Step 3: Calculate the Normal vector (N)
 Cross product of the edge vectors E2-1 and E3-1
 N = CrossProduct(E2-1 , E3-1) = CrossProduct ((20, 0, 0) , (0, -20, 0)) = (0, 0, -

400)
N = Normalize(N) = (0, 0, -1)

 Step 4: Calculate the Bi-Normal vector (B)
 T, B, N vectors are always at right angles to each other

 Derive the third from by just doing a cross product of the
previous two. Therefore

 B = CrossProduct (T , N) = CrossProduct ((1, 0, 0) , (0, 0, -1)) = (0, 1, 0)

 Step 5: Build Mwt from T, B, N

(
Tx Ty Tz

) = (
1 0 0

) Mwt

= Bx By Bz 0 1 0

 Nx Ny Nz 0 0 -1

More Theory
 http://www.terathon.com/code/tangent.html
 http://antongerdelan.net/opengl/normal_mapping.ht

ml

http://www.terathon.com/code/tangent.html
http://antongerdelan.net/opengl/normal_mapping.html
http://antongerdelan.net/opengl/normal_mapping.html

Application Setup
 Application must send

 Vertex position
 Surface normal
 Tangent vector

 Passed as vertex attribute

 The surface rendered
 Other uniform variables

 LightPosition
 SurfaceColor

void PassNormalsToShader ()
 {
 //Load Texture

 // Pass the texture/texture to shader
 glActiveTexture(GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_2D, uiTextureN);
 glUniform1i(p,0); // The texture in the second slot
}
void generatTangent(float p[4][3], float s[4][2],float tangent[3])
{

float v1[] = {p[2][0]-p[1][0],p[2][1]-p[1][1],p[2][2]-p[1][2]};
float v2[] = {p[3][0]-p[1][0],p[3][1]-p[1][1],p[3][2]-p[1][2]};

float st1[]= {s[2][0]-s[1][0],s[2][1]-s[1][1]};
float st2[] ={s[2][0]-s[1][0],s[2][1]-s[1][1]};

float coef = 1/ (st1[0] * st2[1] - st2[0] * st1[1]);

tangent[0] = coef * ((v1[0] * st2[1]) + (v2[0] * -st1[1]));
tangent[1] = coef * ((v1[1] * st2[1]) + (v2[1] * -st1[1]));
tangent[2] = coef * ((v1[2] * st2[1]) + (v2[2] * -st1[1]));

}

 Use
 glVertexAttrib to set tonagent

for a given set of vertices.
 Or
 glVertexAttribPointer sets

the location of the tangents for
every vertex

Normal Maps
 Normals on a per pixel basis

 use a texture map.
 store normal vectors, not colors.

 letting the red, green and blue components of the texture equal x, y
and z respectively.

 The color components must lie between 0 and 1.
 r = (x+1)/2;

g = (y+1)/2;
b = (z+1)/2;

 The normals are in tangent space.
 Normal points up in the z direction.
 RGB color for the straight up normal is (0.5, 0.5, 1.0).
 This is why normal maps are a blueish color.

 Make your own tutorial
 http://www.bencloward.com/tutorials_normal_maps11.shtml

Gimp or Photoshop
 https://code.google.com/p/gimp-normalmap/
 for GIMP, which you can download. The trick then, is to create

the height-map. We will be using the same texture coordinates as
the regular textures, so I just converted one of my textures to
greyscale and drew over it with a grey paintbrush to flatten-out
the surfaces (see above image). You can see that this might take a
bit of trial-and-error to get it looking good.

 The normal map creation procedure looks for differences in
height to work out which way the normals should point. These
are encoded as RGB colours with a range of 0 to 1. Our normals
will need to be -1 to 1, so we will remember to modify this when
we sample it, later. It's also possible to write a little function to
generate the normals from just a height-map, of course.

https://code.google.com/p/gimp-normalmap/

Vertex Shader
 Computing

 Surface-local light
direction

 Surface-local eye
direction

varying vec4 passcolor; //The vertex color passed
varying vec3 LightDir; //The transformed light direction, to pass to the
fragment shader
attribute vec3 tangent;
 void main()
 {

//Put the color in a varying variable
passcolor = gl_Color;
 //Put the vertex in the position passed
 gl_Position = ftransform();
 //Use the first set of texture coordinates in the fragment shader
 gl_TexCoord[0] = gl_MultiTexCoord0;
// transform the normal into eye space and normalize the result */
 vec3 n = normalize(gl_NormalMatrix * gl_Normal);
/* first transform the tangent into eye space - use gl_NormalMatrix
and normalize the result */
vec3 t = normalize(gl_NormalMatrix * tangent);
//calculate binormal vector by ferforming cross product between
normal and tangent
vec3 b = cross(n, t);

vec3 vVertex = vec3(gl_ModelViewMatrix * gl_Vertex);
vec3 tmpVec = gl_LightSource[0].position.xyz - vVertex;

LightDir.x = dot(tmpVec, t);
LightDir.y = dot(tmpVec, b);
LightDir.z = dot(tmpVec, n);

 }

Fragment Shader
 Read the normals from texture shader
 Pertubrate the texel color based on the normal direction

uniform sampler2D BumpTex; //The bump-map
varying vec4 passcolor; //Receiving the vertex color from the vertex shader
varying vec3 LightDir; //Receiving the transformed light direction

 void main()
 {

 //Get the norm of the bump-map from BumpTex by using texture2D()and gl_TexCoord[0].xy
 vec3 BumpNorm = vec3(texture2D(BumpTex, gl_TexCoord[0].xy));
 //Expand the bump-map into a normalized signed vector (actually in a ranges of [-1,1])
 BumpNorm = (BumpNorm -0.5) * 2.0;

 vec3 lVec = normalize(LightDir);
 float diffuse = max(dot(lVec, BumpNorm), 0.0);

 gl_FragColor = vec4(diffuse*passcolor.rgb, passcolor.w);

 }

Your Turn
 Implement Bump Mapping
 Bonus:

 Modify to work with different lights
 Modify to work with textured surface
 Modify to work without normal texture

 Submit your code as follows:
 submit 4431 lab4 filename(s)

	Lab 4�More Shaders
	Debugging Shaders
	Shading Models
	Colour in Shaders
	Quiz
	Lights
	Diffuse Light
	Eye Space
	Ambient Light
	Specular Lights
	Slide Number 11
	1st Task
	Your Turn
	Spotlights
	Attenuation
	Textures
	Texture
	Vertex shader
	Fragment Shader
	OpenGL 3.x and 4.x
	2nd Task
	Your Turn
	Bump Mapping
	Bump Mapping
	Need
	Coordinate Spaces
	Surface Local Coordinate Space�(Tangent Space)
	Why use tangent space? �Why not declare all in world space?
	Deriving world to tangent space transformation matrix
	Creating the tangent space matrix for a face
	Creating the tangent space matrix for a face 2
	More Theory
	Application Setup
	Slide Number 34
	Normal Maps
	Gimp or Photoshop
	Vertex Shader
	Fragment Shader
	3rd Task
	Your Turn
	Slide Number 41

