CSE 3214: Computer Networks
Protocols and Applications

Suprakash Datta

datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875
Course page: http://www.cs.yorku.ca/course/3214

These slides are adapted from Jim Kurose’s slides.

2/4/2014 CSE 3214 - S.Datta

Inserting records into DNS

Example: just created startup “Network Utopia”

Register name networkuptopia.com at a registrar (e.g.,
Network Solutions)

= Need to provide registrar with names and IP
addresses of your authoritative name server (primary
and secondary)

= Registrar inserts two RRs into the com TLD server:

(networkutopia.com, dnsl.networkutopia.com, NS)
(dnsl.networkutopia.com, 212.212.212.1, A)

Put in authoritative server Type A record for
www.networkuptopia.com and Type MX record for
networkutopia.com

How do people get the IP address of your Web site?

2/4/2014 CSE 3214 - S.Datta

Attacking DNS

DDoS attacks

s Bombard root servers with traffic
s Not successful to date
= Traffic Filtering

= Local DNS servers cache IPs of TLD servers, allowing root server
bypass

= Bombard TLD servers
= Potentially more dangerous
Redirect attacks
= Man-in-middle
= Intercept queries
= DNS poisoning
= Send bogus relies to DNS server, which caches
Exploit DNS for DDoS
= Send queries with spoofed source address: target IP
= Requires amplification

2/4/2014 CSE 3214 - S.Datta

P2P file sharing

Example

Alice runs P2P client
application on her
notebook computer

Intermittently connects to
Internet; gets new IP
address for each
connection

Asks for “Hey Jude”

Application displays other
peers that have copy of
Hey Jude.

2/4/2014 CSE 3214 - S.Datta

Alice chooses one of the
peers, Bob.

File is copied from Bob’s
PC to Alice’s notebook:
HTTP

While Alice downloads,
other users uploading from
Alice.

Alice’s peer is both a Web
client and a transient Web
server.

All peers are servers = highly

scalable!

P2P: centralized directory

original “Napster” design

1) when peer connects, it
iInforms central server: centralized

directory server

= |P address

= content n
2) Alice queries for “Hey Jude”

2/4/2014 CSE 3214 - S.Datta 5

P2P: problems with centralized directory

= Single point of failure file transfer is
= Performance bottleneck decentralized, but

= Copyright infringement locating content is
highly decentralized

2/4/2014 CSE 3214 - S.Datta

Query flooding: Gnutella

= fully distributed overlay network: graph

= no central server = edge between peer X and
= public domain protocol Y if there’s 3 TCP
= many Gnutella clients connection

iImplementing protocol = all active peers and edges

IS overlay net
= Edge is not a physical link

= Given peer will typically be
connected with < 10
overlay neighbors

2/4/2014 CSE 3214 - S.Datta 7

Gnutella: protocol
File transfer:

Query message HTTP
sent over existing TCP

connections
Query

peers forward
Query message

QueryHit
sent over

reverse
path

QueryHit

Q‘/e,.

O_\)

Query @
QueryHit

Scalability:

limited scope
flooding

2/4/2014 CSE 3214 - S.Datta

Gnutella: Peer joining

1. Joining peer X must find some other peer in Gnutella
network: use list of candidate peers

2. X sequentially attempts to make TCP with peers on list
until connection setup with Y

3. X sends Ping message to Y; Y forwards Ping message.

4. All peers receiving Ping message respond with Pong
message

5. ~ Xrecelves many Pong messages. It can then setup
additional TCP connections

Peer leaving?

2/4/2014 CSE 3214 - S.Datta

Exploiting heterogeneity: KaZaA

= Each peer is either a group
leader or assigned to a
group leader.

= TCP connection between
peer and its group leader.

s [CP connections between
some pairs of group leaders.
= Group leader tracks the
content in all its children.

@® ordinary peer

‘ group-leader peer

neighoring relationships
in overlay network

2/4/2014 CSE 3214 - S.Datta

10

KaZaA: Querying

Each file has a hash and a descriptor
Client sends keyword query to its group leader

Group leader responds with matches:
s For each match: metadata, hash, |IP address

If group leader forwards query to other group leaders, they
respond with matches

Client then selects files for downloading

s HTTP requests using hash as identifier sent to peers holding
desired file

2/4/2014 CSE 3214 - S.Datta 11

Kazaa tricks

Limitations on simultaneous uploads

Request queuing
Incentive priorities
Parallel downloading

2/4/2014

CSE 3214 - S.Datta

12

P2P services

File sharing - Napster, Gnutella, Kazaa....
Communication - Instant messaging, VolP (Skype)
Computation setiwhome

DHTs - Chord, CAN, Pastry, Tapestry....
Applications built on emerging overlays Planetlab
P2P file systems - Past, Farsite

Wireless Ad-hoc Networking?

2/4/2014 CSE 3214 - S.Datta

13

Overlay graphs

Edges are TCP connections or pointer to an IP address
Edges maintained by periodic “are you alive” messages.

Typically new edge established when a neighbor goes
down

New nodes BOOTSTRAP
Structured vs Unstructured

2/4/2014 CSE 3214 - S.Datta 14

Structured overlays

= Edges arranged in a preplanned manner.
= DNS is an example of a structured overlay (but not P2P)

= Mostly still in the research stage - so has not made it to
the textbook!

2/4/2014 CSE 3214 - S.Datta 15

Challenge: locating content

Gnutella-type search - expensive, no guarantee, need
many cached copies for technique to work well.

Directed search - assign particular nodes to hold
particular content (or pointers to it).

- Problems: Distributed
Handling join/leave

2/4/2014 CSE 3214 - S.Datta

16

Distributed hash tables

= Introduce a hash function to map objects to identifiers. E.qg.
h(“Britney Spears”) = 111

= Distribute the range of the hash function among all nodes

= Each node must “know about” at least one copy of each
object that hashes within its range (when one exists)

2/4/2014 CSE 3214 - S.Datta 17

NOWIII

Switch to the tutorial by Prof. Ross.

We will only cover a small portion on DHTs in this lecture

2/4/2014 CSE 3214 - S.Datta

18

Major problems

User issues
= Security

= Viruses

Community/Network issues
Polluted files
Flash crowds

Freeloading

2/4/2014 CSE 3214 - S.Datta

19

Thought questions

= Is success due to massive number of servers or simply
because content is free?

= Copyright infringement issues: direct vs indirect.

2/4/2014 CSE 3214 - S.Datta

20

Next:

= A very brief description of socket programming

2/4/2014 CSE 3214 - S.Datta

21

Socket programming

Goal: learn how to build client/server application that

communicate using sockets

Socket API

introduced in BSD4.1 UNIX,

1981

explicitly created, used,
released by apps

client/server paradigm

two types of transport
service via socket API:

= unreliable datagram

= reliable, byte stream-
oriented

2/4/2014

CSE 3214 -

a host-local,
application-created,
OS-controlled interface
(a "door") into which
application process can
both send and
receive messages to/from
another application
process

S.Datta 22

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UCP or TCP)

TCP service: reliable transfer of

to another

controlled by,
application
developer®

controlled by
operating
system

»

<

\

2/4/2014

£i([N

process

S socket

TCP with
buffers,
variables

host or
server

internet

CSE 3214 - S.Datta

from one process

£(| N

process

TCP with
buffers,

variables

host or
server

controlled by
application
developer

controlled by
operating

system

23

Socket programming with TCP

Client must contact server = When contacted by client,

= server process must first be server TCP creates new
running socket for server process to

= server must have created communicate with client

Client contacts server by:

socket (door) that welcomes

o = allows server to talk with
client’s contact

multiple clients

= source port numbers used

socket
specifying |IP address, port
number of server process

When client creates socket: . . .
client TCP establishes TCP provides reliable, in-order

connection to server TCP transter of bytes ("pipe”)
between client and server

application viewpoint

2/4/2014 CSE 3214 - S.Datta 24

Stream jargon

= A stream is a sequence of characters that flow into or
out of a process.

= An input stream is attached to some input source for
the process, eg, keyboard or socket.

= An output stream is attached to an output source, eqg,
monitor or socket.

2/4/2014 CSE 3214 - S.Datta

25

Socket programming with TCP

Example client-server app:

1) client reads line from
standard input (inFromUser
stream) , sends to server via ot
socket (outToServer srear
stream)

2) server reads line from socket
3) server converts line to

keyboard monitor
A

——

| inFromUser

uppercase, sends back to Lot
Cllent output% % input
. . . g stream |4 €| stream
4) client reads, prints modified -
line from socket client TCP

(inFromServer stream) socket

to network from network

2/4/2014 CSE 3214 - S.Datta 26

Client/server socket interaction: TCP

Server (running on hostid) Client

create socket,
port=x, for

incoming request:
welcomeSocket =
ServerSocket()

T
wait for incoming <= =— = —CP— — — —p Create socket,
connection request cohnection seTup connect to hostid, port=x

connectionSocket = C”enthCkEt t=
welcomeSocket.accept() ocket()

send request using
read request from / clientSocket
connectionSocket
write reply to —_—
connectionSocket

= read reply from
clientSocket

close
connectionSocket close
clientSocket
2/4/2014 CSE 3214 - S.Datta

27

Example: Java client (TCP)

import java.io.”;
import java.net.”;
class TCPClient {

public static void main(String argv[]) throws Exception
{

String sentence;

String modifiedSentence;

Create

input stream BufferedReader inFromUser =

new BufferedReader(new InputStreamReader(System.in));
Create
client socket, Socket clientSocket = new Socket("hostname", 6789);
connect to server
DataOutputStream outToServer =

Create
new DataOutputStream(clientSocket.getOutputStream());

output stream
attached to socket

2/4/2014 CSE 3214 - S.Datta 28

Example: Java client (TCP), cont.

Create BufferedReader inFromServer =
input stream new BufferedReader(new
attached to socket InputStreamReader(clientSocket.getinputStream()));

sentence = inFromUser.readLine();

Send line _
o server outToServer.writeBytes(sentence + '\n');
Read line modifiedSentence = inFromServer.readLine();

from server
System.out.printin("FROM SERVER: " + modifiedSentence);

clientSocket.close();

2/4/2014 CSE 3214 - S.Datta 29

Create
welcoming socket
at port 6789

Wait, on welcoming
socket for contact
by client

Create input
stream, attached
to socket

2/4/2014

Example: Java server (TCP)

import java.io.”;
import java.net.”;

class TCPServer {
public static void main(String argv[]) throws Exception

{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);
while(true) {
Socket connectionSocket = welcomeSocket.accept();
BufferedReader inFromClient =

new BufferedReader(new
InputStreamReader(connectionSocket.getinputStream()));

CSE 3214 - S.Datta 30

Example: Java server (TCP), cont

Create output
stream, attached

DataOutputStream outToClient =
to socket

new DataOutputStream(connectionSocket.getOutputStream());

Read in line

from socket clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + "\n’;

Write out line
to socket)

}
} End of while loop,
loop back and wait for
another client connection

outToClient.writeBytes(capitalizedSentence);

2/4/2014 CSE 3214 - S.Datta 31

Chapter 2: Summary

Our study of network apps now complete!

= Application architectures

. = specific protocols:
= client-server

= P2P = HTTP
u hyb”d [FTP

= application service = SMTP, POP, IMAP
requirements: = DNS

= reliability, bandwidth, delay

= |nternet transport service
model

m connection-oriented, reliable:
TCP

= unreliable, datagrams: UDP

2/4/2014 CSE 3214 - S.Datta

32

Chapter 2: Summary

Most importantly: learned about protocols

= typical request/reply
message exchange:

= client requests info or
service

= Server responds with data,
status code
= Mmessage formats:

= headers: fields giving info
about data

= data: info being
communicated

control vs. data msgs

= in-band, out-of-band
centralized vs. decentralized
stateless vs. stateful

reliable vs. unreliable msg
transfer

“complexity at network edge”

2/4/2014 CSE 3214 - S.Datta 33

