
2/4/2014 CSE 3214 - S.Datta 1

CSE 3214: Computer Networks
Protocols and Applications

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cs.yorku.ca/course/3214

These slides are adapted from Jim Kurose’s slides.

2/4/2014 CSE 3214 - S.Datta 2

Inserting records into DNS

 Example: just created startup “Network Utopia”
 Register name networkuptopia.com at a registrar (e.g.,

Network Solutions)
 Need to provide registrar with names and IP

addresses of your authoritative name server (primary
and secondary)

 Registrar inserts two RRs into the com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

 Put in authoritative server Type A record for
www.networkuptopia.com and Type MX record for
networkutopia.com

 How do people get the IP address of your Web site?

2/4/2014 CSE 3214 - S.Datta 3

Attacking DNS
DDoS attacks
 Bombard root servers with traffic

 Not successful to date
 Traffic Filtering
 Local DNS servers cache IPs of TLD servers, allowing root server

bypass
 Bombard TLD servers

 Potentially more dangerous
Redirect attacks
 Man-in-middle

 Intercept queries
 DNS poisoning

 Send bogus relies to DNS server, which caches
Exploit DNS for DDoS
 Send queries with spoofed source address: target IP
 Requires amplification

2/4/2014 CSE 3214 - S.Datta 4

P2P file sharing

Example
 Alice runs P2P client

application on her
notebook computer

 Intermittently connects to
Internet; gets new IP
address for each
connection

 Asks for “Hey Jude”
 Application displays other

peers that have copy of
Hey Jude.

 Alice chooses one of the
peers, Bob.

 File is copied from Bob’s
PC to Alice’s notebook:
HTTP

 While Alice downloads,
other users uploading from
Alice.

 Alice’s peer is both a Web
client and a transient Web
server.

All peers are servers = highly
scalable!

2/4/2014 CSE 3214 - S.Datta 5

P2P: centralized directory

original “Napster” design
1) when peer connects, it

informs central server:
 IP address
 content

2) Alice queries for “Hey Jude”
3) Alice requests file from Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

2/4/2014 CSE 3214 - S.Datta 6

P2P: problems with centralized directory

 Single point of failure
 Performance bottleneck
 Copyright infringement

 file transfer is
decentralized, but
locating content is
highly decentralized

2/4/2014 CSE 3214 - S.Datta 7

Query flooding: Gnutella

 fully distributed
 no central server

 public domain protocol
 many Gnutella clients

implementing protocol

overlay network: graph
 edge between peer X and

Y if there’s a TCP
connection

 all active peers and edges
is overlay net

 Edge is not a physical link
 Given peer will typically be

connected with < 10
overlay neighbors

2/4/2014 CSE 3214 - S.Datta 8

Gnutella: protocol

Query

QueryHit

Query

Query

QueryHit

Query

Query

QueryH
it

File transfer:
HTTPr Query message

sent over existing TCP
connections
r peers forward
Query message
r QueryHit
sent over
reverse
path

Scalability:
limited scope
flooding

2/4/2014 CSE 3214 - S.Datta 9

Gnutella: Peer joining

1. Joining peer X must find some other peer in Gnutella
network: use list of candidate peers

2. X sequentially attempts to make TCP with peers on list
until connection setup with Y

3. X sends Ping message to Y; Y forwards Ping message.
4. All peers receiving Ping message respond with Pong

message
5. X receives many Pong messages. It can then setup

additional TCP connections
Peer leaving?

2/4/2014 CSE 3214 - S.Datta 10

Exploiting heterogeneity: KaZaA

 Each peer is either a group
leader or assigned to a
group leader.
 TCP connection between

peer and its group leader.
 TCP connections between

some pairs of group leaders.

 Group leader tracks the
content in all its children.

ordinary peer

group-leader peer

neighoring relationships
in overlay network

2/4/2014 CSE 3214 - S.Datta 11

KaZaA: Querying

 Each file has a hash and a descriptor
 Client sends keyword query to its group leader
 Group leader responds with matches:

 For each match: metadata, hash, IP address

 If group leader forwards query to other group leaders, they
respond with matches

 Client then selects files for downloading
 HTTP requests using hash as identifier sent to peers holding

desired file

2/4/2014 CSE 3214 - S.Datta 12

Kazaa tricks

 Limitations on simultaneous uploads
 Request queuing
 Incentive priorities
 Parallel downloading

2/4/2014 CSE 3214 - S.Datta 13

P2P services

 File sharing – Napster, Gnutella, Kazaa….
 Communication – Instant messaging, VoIP (Skype)
 Computation seti@home
 DHTs – Chord, CAN, Pastry, Tapestry….
 Applications built on emerging overlays Planetlab
 P2P file systems – Past, Farsite
 Wireless Ad-hoc Networking?

2/4/2014 CSE 3214 - S.Datta 14

Overlay graphs

 Edges are TCP connections or pointer to an IP address
 Edges maintained by periodic “are you alive” messages.
 Typically new edge established when a neighbor goes

down
 New nodes BOOTSTRAP
 Structured vs Unstructured

2/4/2014 CSE 3214 - S.Datta 15

Structured overlays

 Edges arranged in a preplanned manner.
 DNS is an example of a structured overlay (but not P2P)
 Mostly still in the research stage – so has not made it to

the textbook!

2/4/2014 CSE 3214 - S.Datta 16

Challenge: locating content

 Gnutella-type search – expensive, no guarantee, need
many cached copies for technique to work well.

 Directed search – assign particular nodes to hold
particular content (or pointers to it).

 - Problems: Distributed
 Handling join/leave

2/4/2014 CSE 3214 - S.Datta 17

Distributed hash tables

 Introduce a hash function to map objects to identifiers. E.g.
h(“Britney Spears”) = 111

 Distribute the range of the hash function among all nodes
 Each node must “know about” at least one copy of each

object that hashes within its range (when one exists)

2/4/2014 CSE 3214 - S.Datta 18

Now…

Switch to the tutorial by Prof. Ross.

We will only cover a small portion on DHTs in this lecture

2/4/2014 CSE 3214 - S.Datta 19

Major problems

User issues
 Security
 Viruses

Community/Network issues
 Polluted files
 Flash crowds
 Freeloading

2/4/2014 CSE 3214 - S.Datta 20

Thought questions

 Is success due to massive number of servers or simply
because content is free?

 Copyright infringement issues: direct vs indirect.

2/4/2014 CSE 3214 - S.Datta 21

Next:

 A very brief description of socket programming

2/4/2014 CSE 3214 - S.Datta 22

Socket programming

Socket API
 introduced in BSD4.1 UNIX,

1981
 explicitly created, used,

released by apps
 client/server paradigm
 two types of transport

service via socket API:
 unreliable datagram
 reliable, byte stream-

oriented

a host-local,
application-created,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages to/from
another application

process

socket

Goal: learn how to build client/server application that
communicate using sockets

2/4/2014 CSE 3214 - S.Datta 23

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UCP or TCP)

TCP service: reliable transfer of bytes from one process
to another

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

2/4/2014 CSE 3214 - S.Datta 24

Socket programming with TCP

Client must contact server
 server process must first be

running
 server must have created

socket (door) that welcomes
client’s contact

Client contacts server by:
 creating client-local TCP

socket
 specifying IP address, port

number of server process
 When client creates socket:

client TCP establishes
connection to server TCP

 When contacted by client,
server TCP creates new
socket for server process to
communicate with client
 allows server to talk with

multiple clients
 source port numbers used

to distinguish clients (more
in Chap 3)

TCP provides reliable, in-order
 transfer of bytes (“pipe”)
between client and server

application viewpoint

2/4/2014 CSE 3214 - S.Datta 25

Stream jargon

 A stream is a sequence of characters that flow into or
out of a process.

 An input stream is attached to some input source for
the process, eg, keyboard or socket.

 An output stream is attached to an output source, eg,
monitor or socket.

2/4/2014 CSE 3214 - S.Datta 26

Socket programming with TCP

Example client-server app:
1) client reads line from

standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

2) server reads line from socket
3) server converts line to

uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

ou
tT

oS
er

ve
r

to network from network

in
Fr

om
Se

rv
er

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
process

client TCP
socket

2/4/2014 CSE 3214 - S.Datta 27

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

2/4/2014 CSE 3214 - S.Datta 28

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

 public static void main(String argv[]) throws Exception
 {
 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server
Create

output stream
attached to socket

2/4/2014 CSE 3214 - S.Datta 29

Example: Java client (TCP), cont.

 BufferedReader inFromServer =
 new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));

 sentence = inFromUser.readLine();

 outToServer.writeBytes(sentence + '\n');

 modifiedSentence = inFromServer.readLine();

 System.out.println("FROM SERVER: " + modifiedSentence);

 clientSocket.close();

 }
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

2/4/2014 CSE 3214 - S.Datta 30

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception
 {
 String clientSentence;
 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient =
 new BufferedReader(new
 InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

2/4/2014 CSE 3214 - S.Datta 31

Example: Java server (TCP), cont

 DataOutputStream outToClient =
 new DataOutputStream(connectionSocket.getOutputStream());

 clientSentence = inFromClient.readLine();

 capitalizedSentence = clientSentence.toUpperCase() + '\n';

 outToClient.writeBytes(capitalizedSentence);
 }
 }
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

2/4/2014 CSE 3214 - S.Datta 32

Chapter 2: Summary

 Application architectures
 client-server
 P2P
 hybrid

 application service
requirements:
 reliability, bandwidth, delay

 Internet transport service
model
 connection-oriented, reliable:

TCP
 unreliable, datagrams: UDP

Our study of network apps now complete!

 specific protocols:
 HTTP
 FTP
 SMTP, POP, IMAP
 DNS

2/4/2014 CSE 3214 - S.Datta 33

Chapter 2: Summary

 typical request/reply
message exchange:
 client requests info or

service
 server responds with data,

status code

 message formats:
 headers: fields giving info

about data
 data: info being

communicated

Most importantly: learned about protocols

 control vs. data msgs
 in-band, out-of-band

 centralized vs. decentralized
 stateless vs. stateful
 reliable vs. unreliable msg

transfer
 “complexity at network edge”

