- TCP congestion control the problem
- TCP congestion control solutions
- Performance of TCP congestion control
- The future of TCP

TCP congestion control: the problem

- Arguably the most crucial part of TCP
- Lots of research effort (over 25+ years)

Performance Objectives

- Link utilization
- Fairness
- Keep congestion down

Q: What is the right notion of fairness?

TCP congestion control: the problem

Nodes do not know about

- other nodes
- total or available capacity on any link
- the number of packets in a router buffer

So, how does a node sense

congestion?

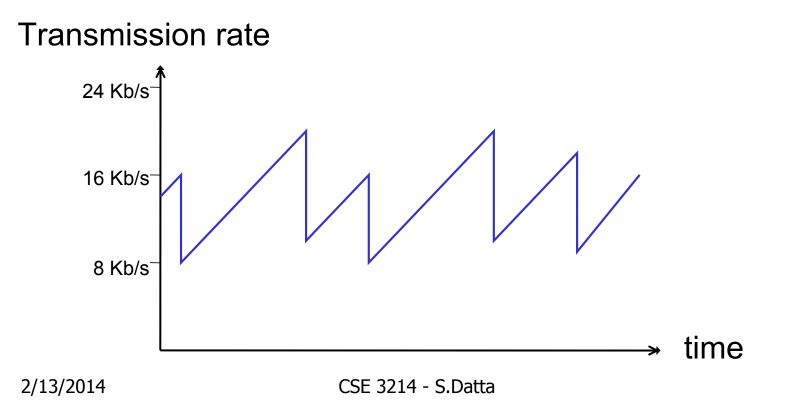
delays, losses,....

absence of congestion?

lower delays, fewer losses....

- TCP congestion control the problem
- TCP congestion control solutions
- Performance of TCP congestion control
- The future of TCP

TCP congestion control – solutions

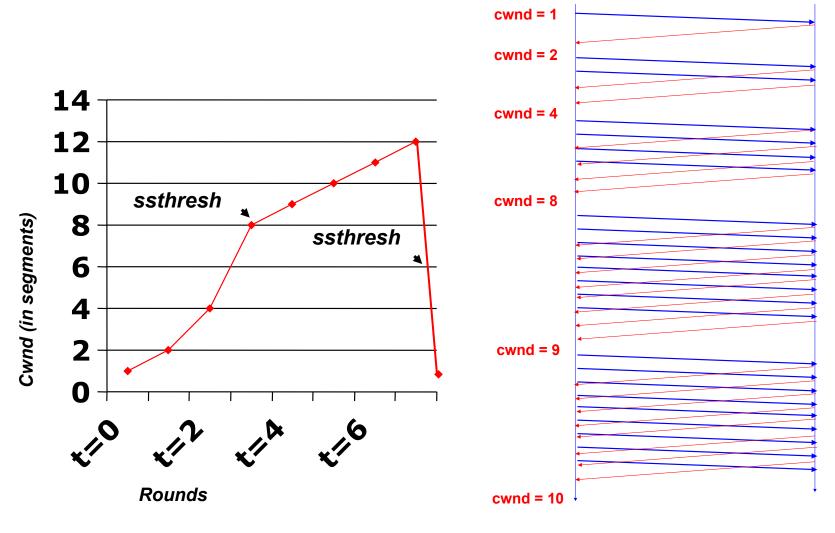

- "Packet loss indicates congestion"
- Sensing congestion: timeouts, duplicate ACKs
- Reacting to congestion: drastic decrease of sending rates
- How/when does a sender recover from congestion?
 - Continuous probing
 - Conservative increases

Q: Formula for increase and decrease ?

TCP congestion control – v1

Let's think in terms of rates:

- Additive (conservative) increase, multiplicative (drastic) decrease of sending rates (<u>AIMD</u>)
- Starting rate: High? Low?

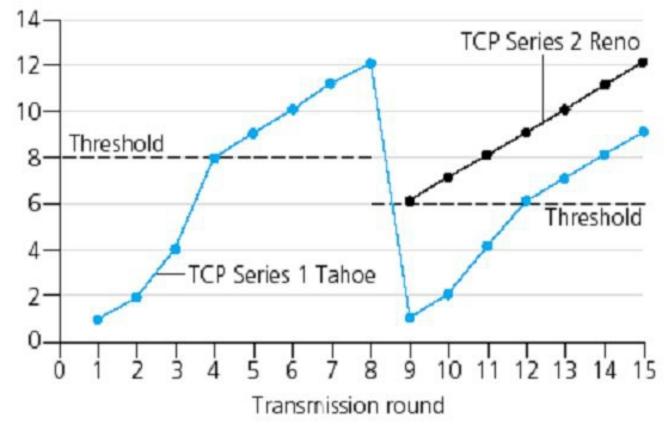

TCP congestion control – v2

TCP Tahoe (1988)

- Two modes: Aggressive probing (Slow start) and careful probing (Congestion avoidance).
- Slow(!) start mode: Multiplicative (aggressive) increase, multiplicative decrease of sending rates.
- Congestion avoidance mode: Additive (conservative) increase, multiplicative (drastic) decrease of sending rates.

TCP Tahoe illustration

Assume that <u>ssthresh = 8</u>



2/13/2014

CSE 3214 - S.Datta

A further improvement

- TCP Reno(1990) and Fast recovery
- Intuition: Distinguish between loss and 3-dup ACK

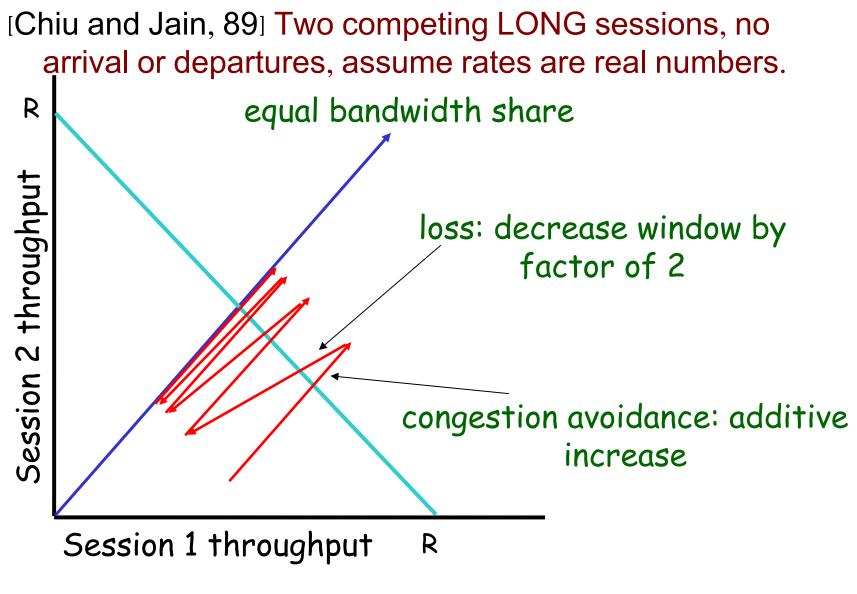
Windows vs rates

 TCP uses windows (number of packets sent without waiting for ACKs)

Transmission rate = W * Packet size/RTT

RTT = round trip time

Self-clocking

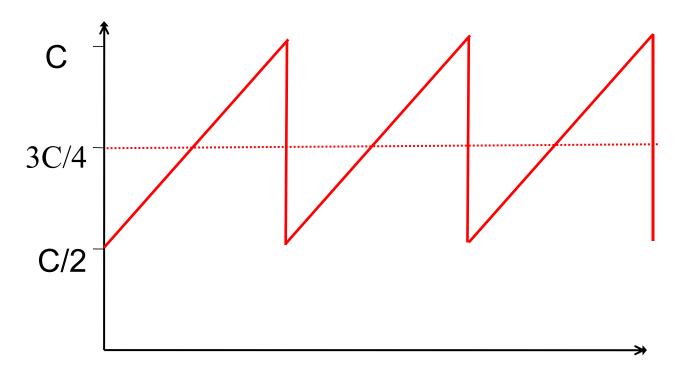

- TCP congestion control the problem
- TCP congestion control solutions
- Performance of TCP congestion control
- The future of TCP

Performance of TCP congestion control

- Fairness
- Link utilization
- Algorithmic perspective?

 Note: Many other TCP versions have been proposed. No one version outperforms all others in all situations

TCP Performance – Fairness


Lessons

- Caveat: In reality, both sessions may not detect congestion at the same time
- Once the trajectory hits x=y line, it stays there
- For real-valued rates, reaches x=y only as $t \to \infty$
- Will *leave* optimal point after reaching it (continuous probing)
- Generalizes to n sessions
- MIMD, MIAD, AIAD all unfair
- Can be shown to hold in the presence of arrivals and departures if all sessions are long [Edmonds, Datta, Dymond, 03]

TCP Performance – link utilization

At least 25% capacity lost

Transmission rate

time

TCP Performance – algorithmic view

- How good an algorithm is it?
 - i.e. Optimal? Near-optimal?
- Very difficult question
 - Does not correspond to clean theoretical models.
- Edmonds, Datta, Dymond, 03 TCP "performs well" (is competitive against a limited adversary) when each session is of a minimum specified size...

TCP Performance – problems

When/where does TCP not work well?

- Multimedia networking
 - Non-smooth (sawtooth) bit rate
 - Best-effort: no QoS guarantees
- Wireless/hybrid networks
 - "Packet loss indicates congestion" ?
 - Congestion and loss are not always correlated
- Very high-speed networks
- Fairness issues: parallel sessions, multiple bottlenecks, small sessions...

TCP/IP Design issues

- Co-operative algorithm
- Policing is hard to do
- Tracing of malicious hosts/users difficult

- A 2-minute introduction to the TCP/IP architecture
- The role of TCP
- TCP congestion control the problem
- TCP congestion control solutions
- Performance of TCP congestion control
- The future of TCP

The Future of TCP

- Active queue management schemes
 - Drop packets proactively to reduce congestion
 - RED, REM, BLUE,...
- TCP for ultra-high speed networks
 - FastTCP, HSTCP,....
 - Usually use delay for being more responsive to congestion
 - Less draconian
- TCP for wireless, hybrid networks
 - Treats wireless parts separately