
2/11/2014 CSE 3214 - S.Datta 1

CSE 3214: Computer Networks
Protocols and Applications

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/3214

These slides are adapted from Jim Kurose’s slides.

2/11/2014 CSE 3214 - S.Datta 2

Next

 The transport layer

2/11/2014 CSE 3214 - S.Datta 3

Chapter 3: Transport Layer

Our goals:
 understand principles

behind transport layer
services:
 multiplexing/demultiplexin

g
 reliable data transfer
 flow control
 congestion control

 learn about transport layer
protocols in the Internet:
 UDP: connectionless

transport
 TCP: connection-oriented

transport
 TCP congestion control

2/11/2014 CSE 3214 - S.Datta 4

Chapter 3 outline

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of reliable
data transfer

- LEAVE OUT

 3.5 Connection-oriented
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of
congestion control

 3.7 TCP congestion
control

2/11/2014 CSE 3214 - S.Datta 5

Transport services and protocols

 provide logical communication
between app processes
running on different hosts

 transport protocols run in end
systems
 send side: breaks app

messages into segments,
passes to network layer

 rcv side: reassembles
segments into messages,
passes to app layer

 more than one transport
protocol available to apps
 Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

2/11/2014 CSE 3214 - S.Datta 6

Transport vs. network layer

 network layer: logical
communication between hosts

 transport layer: logical
communication between
processes
 relies on, enhances, network

layer services

Household analogy:
12 kids sending letters to 12
kids

 processes = kids
 app messages = letters in

envelopes
 hosts = houses
 transport protocol = Ann and

Bill
 network-layer protocol =

postal service

2/11/2014 CSE 3214 - S.Datta 7

Internet transport-layer protocols

 reliable, in-order delivery (TCP)
 congestion control
 flow control
 connection setup

 unreliable, unordered delivery:
UDP
 no-frills extension of “best-

effort” IP
 services not available:

 delay guarantees
 bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

2/11/2014 CSE 3214 - S.Datta 8

Chapter 3 outline

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of reliable
data transfer

 3.5 Connection-oriented
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of
congestion control

 3.7 TCP congestion
control

2/11/2014 CSE 3214 - S.Datta 9

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

2/11/2014 CSE 3214 - S.Datta 10

How demultiplexing works

 host receives IP datagrams
 each datagram has source IP

address, destination IP
address

 each datagram carries 1
transport-layer segment

 each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)

 host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

2/11/2014 CSE 3214 - S.Datta 11

Connectionless demultiplexing

 Create sockets with port numbers:
DatagramSocket mySocket1 = new

DatagramSocket(99111);
DatagramSocket mySocket2 = new

DatagramSocket(99222);
 UDP socket identified by two-tuple:
(dest IP address, dest port number)

 When host receives UDP
segment:
 checks destination port

number in segment
 directs UDP segment to

socket with that port number

 IP datagrams with
different source IP
addresses and/or source
port numbers directed to
same socket

2/11/2014 CSE 3214 - S.Datta 12

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client
 IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”

2/11/2014 CSE 3214 - S.Datta 13

Connection-oriented demux

 TCP socket identified by 4-
tuple:
 source IP address
 source port number
 dest IP address
 dest port number

 recv host uses all four values
to direct segment to
appropriate socket

 Server host may support many
simultaneous TCP sockets:
 each socket identified by its

own 4-tuple
 Web servers have different

sockets for each connecting
client
 non-persistent HTTP will have

different socket for each
request

2/11/2014 CSE 3214 - S.Datta 14

Connection-oriented demux (cont)

Client
IP:B

P1

client
 IP: A

P1P2P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

2/11/2014 CSE 3214 - S.Datta 15

Connection-oriented demux: Threaded Web Server

Client
IP:B

P1

client
 IP: A

P1P2

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

2/11/2014 CSE 3214 - S.Datta 16

Chapter 3 outline

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of reliable
data transfer

 3.5 Connection-oriented
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of
congestion control

 3.7 TCP congestion
control

2/11/2014 CSE 3214 - S.Datta 17

UDP: User Datagram Protocol [RFC 768]

 “no frills,” “bare bones”
Internet transport protocol

 “best effort” service, UDP
segments may be:
 lost
 delivered out of order to

app
 connectionless:

 no handshaking between
UDP sender, receiver

 each UDP segment
handled independently of
others

Why is there a UDP?
 no connection establishment

(which can add delay)
 simple: no connection state

at sender, receiver
 small segment header
 no congestion control: UDP

can blast away as fast as
desired

2/11/2014 CSE 3214 - S.Datta 18

UDP: more

 often used for streaming
multimedia apps
 loss tolerant
 rate sensitive

 other UDP uses
 DNS
 SNMP

 reliable transfer over UDP:
add reliability at application
layer
 application-specific error

recovery!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

2/11/2014 CSE 3214 - S.Datta 19

UDP checksum

Sender:
 treat segment contents

as sequence of 16-bit
integers

 checksum: addition (1’s
complement sum) of
segment contents

 sender puts checksum
value into UDP
checksum field

Receiver:
 compute checksum of received

segment
 check if computed checksum

equals checksum field value:
 NO - error detected
 YES - no error detected.
But maybe errors
nonetheless?

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

2/11/2014 CSE 3214 - S.Datta 20

Internet Checksum Example

 Note
 When adding numbers, a carryout from the most significant

bit needs to be added to the result

 Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

2/11/2014 CSE 3214 - S.Datta 21

Chapter 3 outline

 3.1 Transport-layer
services

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of reliable
data transfer

 3.5 Connection-oriented
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of
congestion control

 3.7 TCP congestion
control

2/11/2014 CSE 3214 - S.Datta 22

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

 full duplex data:
 bi-directional data flow in

same connection
 MSS: maximum segment

size
 connection-oriented:

 handshaking (exchange of
control msgs) init’s sender,
receiver state before data
exchange

 flow controlled:
 sender will not overwhelm

receiver

 point-to-point:
 one sender, one receiver

 reliable, in-order byte steam:
 no “message boundaries”

 pipelined:
 TCP congestion and flow

control set window size
 send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

2/11/2014 CSE 3214 - S.Datta 23

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

2/11/2014 CSE 3214 - S.Datta 24

TCP seq. #’s and ACKs

Seq. #’s:
 byte stream “number”

of first byte in
segment’s data

ACKs:
 seq # of next byte

expected from other
side

 cumulative ACK
Q: how receiver handles out-

of-order segments
 A: TCP spec doesn’t

say, - up to
implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

2/11/2014 CSE 3214 - S.Datta 25

TCP Round Trip Time and Timeout

Q: how to set TCP timeout
value?

 longer than RTT
 but RTT varies

 too short: premature timeout
 unnecessary

retransmissions
 too long: slow reaction to

segment loss

Q: how to estimate RTT?
 SampleRTT: measured time from

segment transmission until ACK receipt
 ignore retransmissions

 SampleRTT will vary, want estimated
RTT “smoother”
 average several recent

measurements, not just current
SampleRTT

2/11/2014 CSE 3214 - S.Datta 26

TCP Round Trip Time and Timeout

EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

 Exponential weighted moving average
 influence of past sample decreases exponentially fast
 typical value: = 0.125

2/11/2014 CSE 3214 - S.Datta 27

Example RTT estimation:

2/11/2014 CSE 3214 - S.Datta 28

TCP Round Trip Time and Timeout

Setting the timeout
 EstimtedRTT plus “safety margin”

 large variation in EstimatedRTT -> larger safety margin
 first estimate of how much SampleRTT deviates from EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-)*DevRTT +
 *|SampleRTT-EstimatedRTT|
(typically, = 0.25)

 Then set timeout interval:

2/11/2014 CSE 3214 - S.Datta 29

Chapter 3 outline

 3.1 Transport-layer services
 3.2 Multiplexing and

demultiplexing
 3.3 Connectionless transport:

UDP
 3.4 Principles of reliable data

transfer

 3.5 Connection-oriented
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of congestion
control

 3.7 TCP congestion control

2/11/2014 CSE 3214 - S.Datta 30

TCP reliable data transfer

 TCP creates rdt service on top
of IP’s unreliable service

 Pipelined segments
 Cumulative acks
 TCP uses single retransmission

timer

 Retransmissions are triggered
by:
 timeout events
 duplicate acks

 Initially consider simplified TCP
sender:
 ignore duplicate acks
 ignore flow control, congestion

control

2/11/2014 CSE 3214 - S.Datta 31

TCP sender events:

data rcvd from app:
 Create segment with seq #
 seq # is byte-stream number

of first data byte in segment
 start timer if not already

running (think of timer as for
oldest unacked segment)

 expiration interval:
TimeOutInterval

timeout:
 retransmit segment that

caused timeout
 restart timer
 Ack rcvd:
 If acknowledges previously

unacked segments
 update what is known to be

acked
 start timer if there are

outstanding segments

2/11/2014 CSE 3214 - S.Datta 32

TCP
sender

(simplified)

 NextSeqNum = InitialSeqNum
 SendBase = InitialSeqNum

 loop (forever) {
 switch(event)

 event: data received from application above
 create TCP segment with sequence number NextSeqNum
 if (timer currently not running)
 start timer
 pass segment to IP
 NextSeqNum = NextSeqNum + length(data)

 event: timer timeout
 retransmit not-yet-acknowledged segment with
 smallest sequence number
 start timer

 event: ACK received, with ACK field value of y
 if (y >= SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }

 } /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

2/11/2014 CSE 3214 - S.Datta 33

TCP: retransmission scenarios

Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time
Se

q=
92

 t
im

eo
ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

2/11/2014 CSE 3214 - S.Datta 34

TCP retransmission scenarios (more)

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

2/11/2014 CSE 3214 - S.Datta 35

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

2/11/2014 CSE 3214 - S.Datta 36

Fast Retransmit

 Time-out period often relatively
long:
 long delay before resending

lost packet
 Detect lost segments via

duplicate ACKs.
 Sender often sends many

segments back-to-back
 If segment is lost, there will

likely be many duplicate ACKs.

 If sender receives 3 ACKs for
the same data, it supposes
that segment after ACKed
data was lost:
 fast retransmit: resend

segment before timer expires

2/11/2014 CSE 3214 - S.Datta 37

 event: ACK received, with ACK field value of y
 if (y > SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }
 else {
 increment count of dup ACKs received for y
 if (count of dup ACKs received for y = 3) {
 resend segment with sequence number y
 }

Fast retransmit algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

2/11/2014 CSE 3214 - S.Datta 38

Chapter 3 outline

 3.1 Transport-layer services
 3.2 Multiplexing and

demultiplexing
 3.3 Connectionless transport:

UDP
 3.4 Principles of reliable data

transfer

 3.5 Connection-oriented
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of congestion
control

 3.7 TCP congestion control

2/11/2014 CSE 3214 - S.Datta 39

TCP Flow Control

 receive side of TCP connection
has a receive buffer:

 speed-matching service:
matching the send rate to the
receiving app’s drain rate

 app process may be slow at
reading from buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
 too fast

flow control

2/11/2014 CSE 3214 - S.Datta 40

TCP Flow control: how it works

(Suppose TCP receiver discards out-of-
order segments)

 spare room in buffer
= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

 Rcvr advertises spare room
by including value of
RcvWindow in segments

 Sender limits unACKed data
to RcvWindow
 guarantees receive buffer

doesn’t overflow

2/11/2014 CSE 3214 - S.Datta 41

Chapter 3 outline

 3.1 Transport-layer services
 3.2 Multiplexing and

demultiplexing
 3.3 Connectionless transport:

UDP
 3.4 Principles of reliable data

transfer

 3.5 Connection-oriented
transport: TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of congestion
control

 3.7 TCP congestion control

2/11/2014 CSE 3214 - S.Datta 42

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

 initialize TCP variables:
 seq. #s
 buffers, flow control info

(e.g. RcvWindow)
 client: connection initiator
 Socket clientSocket = new

Socket("hostname","port
number");

 server: contacted by client
 Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP SYN
segment to server
 specifies initial seq #
 no data

Step 2: server host receives SYN,
replies with SYNACK segment

 server allocates buffers
 specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

2/11/2014 CSE 3214 - S.Datta 43

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system sends
TCP FIN control segment to
server

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed
ti

m
ed

 w
ai

t

2/11/2014 CSE 3214 - S.Datta 44

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

 Enters “timed wait” - will
respond with ACK to
received FINs

Step 4: server, receives ACK.
Connection closed.

Note: with small modification,
can handle simultaneous FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed
ti

m
ed

 w
ai

t

closed

2/11/2014 CSE 3214 - S.Datta 45

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

