Loop Invariants and Binary Search

Chapter 4.3.3 and 9.3.1

Outline

- Iterative Algorithms, Assertions and Proofs of Correctness
- Binary Search: A Case Study

Outline

> Iterative Algorithms, Assertions and Proofs of Correctness

Binary Search: A Case Study

Assertions

An assertion is a statement about the state of the data at a specified point in your algorithm.

An assertion is not a task for the algorithm to perform.

You may think of it as a comment that is added for the benefit of the reader.

Loop Invariants

- Binary search can be implemented as an iterative algorithm (it could also be done recursively).
- Loop Invariant: An assertion about the current state useful for designing, analyzing and proving the correctness of iterative algorithms.

Other Examples of Assertions

- Preconditions: Any assumptions that must be true about the input instance.
- Postconditions: The statement of what must be true when the algorithm/program returns.
- Exit condition: The statement of what must be true to exit a loop.

Iterative Algorithms

Take one step at a time towards the final destination

loop (done) take step end loop

Establishing Loop Invariant

From the Pre-Conditions on the input instance we must establish the loop invariant.

Maintain Loop Invariant

- Suppose that
 - □ We start in a safe location (pre-condition)
 - If we are in a safe location, we always step to another safe location (loop invariant)
- Can we be assured that the computation will always be in a safe location?

By what principle?

Ending The Algorithm

- Define Exit Condition
- Termination: With sufficient progress, the exit condition will be met.
- When we exit, we know
 exit condition is true
 loop invariant is true
 from these we must establish
 the post conditions.

Definition of Correctness

<PreCond> & <code> →<PostCond>

If the input meets the preconditions, then the output must meet the postconditions.

If the input does not meet the preconditions, then nothing is required.

Outline

- Iterative Algorithms, Assertions and Proofs of Correctness
- Binary Search: A Case Study

Define Problem: Binary Search

- PreConditions
 - **□** Key 25

Sorted List

PostConditions

□ Find key in list (if there).

Define Loop Invariant

- Maintain a sublist.
- If the key is contained in the original list, then the key is contained in the sublist.

key 25

3	5	6	13	18	21	21	25	36	43	49	51	53	60	72	74	83	88	91	95
			No.	2010-00	100 May 201	Distance in the	100 200	1 / A A A	- 2020	No. 10	to Date of	1000 - 20C	200-200-20	1200	1 / m 2/2				

Define Step

- Cut sublist in half.
- Determine which half the key would be in.
- Keep that half.

Define Step

- It is faster not to check if the middle element is the key.
- > Simply continue.

Make Progress

\succ The size of the list becomes smaller.

Exit Condition

- If the key is contained in the original list,
 - then the key is contained in the sublist.
- Sublist contains one element.

CSE 2011

Prof. J. Elder

- 19 -

• If element = key, return associated

entry.

• Otherwise return false.

Running Time

The sublist is of size n, $n/_2$, $n/_4$, $n/_8$,...,1 Each step O(1) time. Total = O(log n)

Running Time

- Binary search can interact poorly with the memory hierarchy (i.e. <u>caching</u>), because of its random-access nature.
- It is common to abandon binary searching for linear searching as soon as the size of the remaining span falls below a small value such as 8 or 16 or even more in recent computers.

END OF LECTURE FEB 13, 2014

BinarySearch(A[1..n], key)

<precondition>: A[1..n] is sorted in non-decreasing order

<postcondition>: If key is in A[1..n], algorithm returns its location p = 1, q = n

while q > p

< loop-invariant>: If key is in A[1..n], then key is in A[p..q]

$$mid = \left\lfloor \frac{p+q}{2} \right\rfloor$$

if $key \le A[mid]$
 $q = mid$
else
 $p = mid + 1$
end
end
if $key = A[p]$
return(p)
else
return("Key not in list")
end

Simple, right?

- Although the concept is simple, binary search is notoriously easy to get wrong.
- > Why is this?

- The basic idea behind binary search is easy to grasp.
- It is then easy to write pseudocode that works for a 'typical' case.
- Unfortunately, it is equally easy to write pseudocode that fails on the *boundary conditions*.

What condition will break the loop invariant?

if $key \leq A[mid]$ q = midelse p = mid + 1end if key < A[mid] q = mid - 1else p = midend

OK

OK

Not OK!!

Shouldn't matter, right?

Select mid =
$$\left[\frac{p+q}{2}\right]$$

If key \leq mid,If key \geq mid,then key is inthen key is inleft half.right half.

- 32 -

CSE 2011

Prof. J. Elder

Last Updated: 2014-02-25 9:59 AM

 $mid = \left\lfloor \frac{p+q}{2} \right\rfloor$ if key $\leq A[mid']$ q = midelse p = mid' + 1end

OK

$$mid = \left\lceil \frac{p+q}{2} \right\rceil$$

if key < A[mid]
 $q = mid - 1$
else
 $p = mid$
end

OK

Not OK!!

Getting it Right

- How many possible algorithms?
- How many correct algorithms?
- Probability of guessing correctly?

 $\mathsf{mid} = \left| \frac{p+q}{2} \right| \qquad \mathsf{or mid} = \left[\frac{p+q}{2} \right] ?$ if key $\leq A[mid] \leftarrow$ or if key $\langle A[mid] ?$ q = midelse p = mid + 1q = mid - 1or end else p = midend

Alternative Algorithm: Less Efficient but More Clear

```
BinarySearch(A[1..n], key)
<precondition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If key is in A[1..n], algorithm returns its location
p = 1, q = n
while q \ge p
   < loop-invariant>: If key is in A[1..n], then key is in A[p..q]
   mid = \left| \frac{p+q}{2} \right|
   if key < A[mid]
       q = mid - 1
   else if key > A[mid]
       p = mid + 1
   else
                                      Still \Theta(\log n), but with slightly larger constant.
       return(mid)
   end
end
return("Key not in list")
```


Card Trick

Which column?

UNIVERSIT

Last Updated: 2014-02-25 9:59 AM

Selected column is placed in the middle

Relax Loop Invariant: I will remember the same about each column.

Which column?

Selected column is placed in the middle

UNIVERSIT UNIVERSIT

Selected column is placed in the middle

Ternary Search

Loop Invariant: selected card in central subset of cards

Size of subset =
$$\left\lceil n/3^{i-1} \right\rceil$$

where
 $n =$ total number of cards

i = iteration index

How many iterations are required to guarantee success?

Learning Outcomes

> From this lecture, you should be able to:

Use the loop invariant method to think about iterative algorithms.

Prove that the loop invariant is established.

- Prove that the loop invariant is maintained in the 'typical' case.
- Prove that the loop invariant is maintained at all boundary conditions.
- □ Prove that progress is made in the 'typical' case
- Prove that progress is guaranteed even near termination, so that the exit condition is always reached.
- Prove that the loop invariant, when combined with the exit condition, produces the post-condition.

□ Trade off efficiency for clear, correct code.

