
Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 1 -

Loop Invariants and Binary Search

Chapter 4.3.3 and 9.3.1

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 2 -

Outline

Ø  Iterative Algorithms, Assertions and Proofs of Correctness

Ø  Binary Search: A Case Study

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 3 -

Outline

Ø  Iterative Algorithms, Assertions and Proofs of Correctness

Ø  Binary Search: A Case Study

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 4 -

Assertions

Ø An assertion is a statement about the
state of the data at a specified point in
your algorithm.

Ø An assertion is not a task for the algorithm
to perform.

Ø You may think of it as a comment that is
added for the benefit of the reader.

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 5 -

Loop Invariants

Ø Binary search can be implemented as an iterative
algorithm (it could also be done recursively).

Ø  Loop Invariant: An assertion about the current state
useful for designing, analyzing and proving the
correctness of iterative algorithms.

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 6 -

Other Examples of Assertions

Ø Preconditions: Any assumptions that must be true
about the input instance.

Ø Postconditions: The statement of what must be true
when the algorithm/program returns.

Ø Exit condition: The statement of what must be true to
exit a loop.

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 7 -

Iterative Algorithms

Take one step at a time

 towards the final destination

loop (done)

 take step

end loop

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 8 -

From the Pre-Conditions on the input instance
we must establish the loop invariant.

Establishing Loop Invariant

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 9 -

Maintain Loop Invariant

Ø Suppose that
q We start in a safe location (pre-condition)

q  If we are in a safe location, we always step
to another safe location (loop invariant)

Ø Can we be assured that the
computation will always be in a safe
location?

Ø  By what principle?

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 10 -

Maintain Loop Invariant
•  By Induction the computation will
always be in a safe location.

(0)

, ()

, () (1)

S

i S i

i S i S i

⇒ ⎫
⎪⎪⇒∀ ⇒⎬
⎪
⎪⇒∀ ⇒ + ⎭

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 11 -

Ending The Algorithm
Ø  Define Exit Condition

Ø  Termination: With sufficient progress,

 the exit condition will be met.

Ø  When we exit, we know
q  exit condition is true

q  loop invariant is true

 from these we must establish

 the post conditions.

Exit

Exit

0 km Exit

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 12 -

Definition of Correctness
<PreCond> & <code> è<PostCond>

If the input meets the preconditions,

then the output must meet the postconditions.

If the input does not meet the preconditions, then
nothing is required.

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 13 -

Outline

Ø  Iterative Algorithms, Assertions and Proofs of Correctness

Ø  Binary Search: A Case Study

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 14 -

Define Problem: Binary Search

Ø PreConditions
q Key 25

q Sorted List

Ø PostConditions
q Find key in list (if there).

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 15 -

Define Loop Invariant

Ø Maintain a sublist.

Ø  If the key is contained in the original list, then the key is
contained in the sublist.

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 16 -

Define Step

Ø Cut sublist in half.

Ø Determine which half the key would be in.

Ø Keep that half.

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

mid

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 17 -

Define Step

Ø  It is faster not to check if the middle element is the key.

Ø Simply continue.

key 43

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 18 -

Make Progress

Ø  The size of the list becomes smaller.

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

79 km

75 km

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 19 -

Exit Condition

Ø  If the key is contained in the
original list,

 then the key is contained in the
sublist.

Ø  Sublist contains one element.

Exit

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

0 km

•  If element = key,
return associated
entry.

•  Otherwise return
false.

key 25

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 20 -

Running Time

The sublist is of size n, n/2, n/4, n/8,…,1
Each step O(1) time.

Total = O(log n)

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 21 -

Running Time

Ø Binary search can interact poorly with the memory
hierarchy (i.e. caching), because of its random-access
nature.

Ø  It is common to abandon binary searching for linear
searching as soon as the size of the remaining span falls
below a small value such as 8 or 16 or even more in
recent computers.

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 22 -

END OF LECTURE
FEB 13, 2014

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 23 -

<precondition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If is in A[1..n], algorithm returns

1,
 its location

loop-invariant>: If is

BinarySea

in

rch(A[1..n],

whil

)

e
p q

key

key
q p

e

n

k y

<
>

= =

if []

els

2

1

return()

return("Key n

A[1..n], then

e

end
end
if []

end

 is in A[p..

ot in list")

q]
p qmid

q mid

p mi

key A m

key

id

key A p

e

d

p
lse

≤

+⎢ ⎥= ⎢ ⎥⎣ ⎦

=

= +

=

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 24 -

Simple, right?

Ø Although the concept is simple, binary search is
notoriously easy to get wrong.

Ø Why is this?

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 25 -

Boundary Conditions

Ø  The basic idea behind binary search is easy to grasp.

Ø  It is then easy to write pseudocode that works for a
‘typical’ case.

Ø Unfortunately, it is equally easy to write pseudocode that
fails on the boundary conditions.

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 26 -

1

if []

else

end

q mid

p

key A mid

mid

=

=

≤

+

Boundary Conditions

1

if []

else

end

q mid

p

key A mid

mid

=

=

<

+or

What condition will break the loop invariant?

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 27 -

Boundary Conditions

key 36

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

mid

sC eod lek cey t A[m rige hid] t lf: ha≥ →

Bug!!

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 28 -

1

if []

else

end

q mid

p

key A mid

mid

=

=

≤

+

Boundary Conditions

1

if []

else

end

q mid

p

key A mid

mid

=

=

<

+

if < []

else

end

1q mid

p

key A mid

mid

= −

=

OK OK Not OK!!

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 29 -

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Boundary Conditions

mid
2
+⎢ ⎥= ⎢ ⎥⎣ ⎦
p q mid

2
+⎡ ⎤= ⎢ ⎥⎢ ⎥
p q

or

Shouldn’t matter, right? Select mid
2

p q+⎡ ⎤= ⎢ ⎥⎢ ⎥

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 30 -

6 74

Boundary Conditions

key 25

95 91 88 83 72 60 53 51 49 43 36 25 21 21 18 13 5 3

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

mid
Select mid

2
p q+⎡ ⎤= ⎢ ⎥⎢ ⎥

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 31 -

25 18 74

Boundary Conditions

key 25

95 91 88 83 72 60 53 51 49 43 36 21 21 13 6 5 3

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

mid
Select mid

2
p q+⎡ ⎤= ⎢ ⎥⎢ ⎥

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 32 -

25 13 74

Boundary Conditions

key 25

95 91 88 83 72 60 53 51 49 43 36 21 21 18 6 5 3

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

• Another bug!

No progress
toward goal:

Loops Forever!

mid
Select mid

2
p q+⎡ ⎤= ⎢ ⎥⎢ ⎥

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 33 -

if [

mid

]
2

1
else

end

key A mi

p q

q mid

p mid

d

+⎢ ⎥= ⎢ ⎥⎣ ⎦

= +

≤
=

Boundary Conditions

if [

mid

]
2

1
else

end

key A mi

p q

q mid

p mid

d

+⎡ ⎤= ⎢ ⎥⎢ ⎥

= +

≤
=

if < [

mid
2

1
]

else

end

key A mid

p q

q mid

p mid

+⎡ ⎤= ⎢ ⎥⎢ ⎥

= −

=

OK OK Not OK!!

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 34 -

if [

mid

]
2

1
else

end

key A mi

p q

q mid

p mid

d

+⎢ ⎥= ⎢ ⎥⎣ ⎦

= +

≤
=

Getting it Right

Ø How many
possible
algorithms?

Ø How many
correct
algorithms?

Ø Probability of
guessing
correctly?

midr
2

o ? p q+⎡ ⎤= ⎢ ⎥⎢ ⎥

if < [or ?]key A mid

else
o

end

1r q mid

p mid

= −

=

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 35 -

BinarySearch(A[1..n],key)
<precondition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If key is in A[1..n], algorithm returns its location
p = 1, q = n
while q ≥ p

< loop-invariant>: If key is in A[1..n], then key is in A[p..q]

mid =
p + q

2

⎢

⎣
⎢
⎢

⎥

⎦
⎥
⎥

if key <A[mid]
q = mid − 1

else if key > A[mid]
p = mid + 1

else
return(mid)

end
end
return("Key not in list")

Alternative Algorithm: Less Efficient but More Clear

ΘStill (log), but with slightly larger constant.n

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 36 -

Ø A volunteer, please.

Card Trick

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 37 -

Pick a Card

Done

Thanks to J. Edmonds for this example.

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 38 -

Loop Invariant:
The selected card is one

of these.

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 39 -

Which

column?

left

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 40 -

Loop Invariant:
The selected card is one

of these.

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 41 -

Selected column is placed
in the middle

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 42 -

I will rearrange the cards

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 43 -

Relax Loop Invariant:
I will remember the same

about each column.

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 44 -

Which

column?

right

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 45 -

Loop Invariant:
The selected card is one

of these.

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 46 -

Selected column is placed
in the middle

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 47 -

I will rearrange the cards

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 48 -

Which

column?

left

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 49 -

Loop Invariant:
The selected card is one

of these.

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 50 -

Selected column is placed
in the middle

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 51 -

Here is your
card.

Wow!

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 52 -

Ternary Search

Ø  Loop Invariant: selected card in central subset of
cards

Ø How many iterations are required to guarantee success?

1Size of subset = / 3

where
total number of cards

iteration index

in

n
i

−⎡ ⎤⎢ ⎥

=
=

Last Updated: 2014-02-25 9:59 AM
CSE 2011
Prof. J. Elder - 53 -

Learning Outcomes

Ø  From this lecture, you should be able to:
q Use the loop invariant method to think about iterative algorithms.

q Prove that the loop invariant is established.

q Prove that the loop invariant is maintained in the ‘typical’ case.

q Prove that the loop invariant is maintained at all boundary
conditions.

q Prove that progress is made in the ‘typical’ case

q Prove that progress is guaranteed even near termination, so that
the exit condition is always reached.

q Prove that the loop invariant, when combined with the exit
condition, produces the post-condition.

q Trade off efficiency for clear, correct code.

