
2014-­‐03-­‐11	

1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1720
Week 09, Lecture 15

Winter 2014 ! Tuesday, Mar 04, 2014

2

General Info
•  Did you complete the lab exercises?

•  only 15 submissions as of this morning

•  Did you read Chapter 10?

•  Are your preparations underway for Term Test #2?
•  scheduled: Thu Mar 20
•  covers Chapter 9, Chapter 10, concepts from codebase

•  Are your preparations underway for Lab Test #3
•  scheduled Thu Mar 13/Fri Mar 14
•  covers concepts from lab exercises

2014-­‐03-­‐11	

2	

3

import type.lib.CreditCard;
import type.lib.RewardCard;

public class L13Ex02 {

 public static void main(String[] args) {

 CreditCard tomsVisa;
 tomsVisa = new RewardCard(123458, "Tom Bentley");
 tomsVisa.charge(88);
 System.out.println(tomsVisa.toString());
 }

}

Example of polymorphism

At compile time (during early binding), the
variable tomsVisa resolves to CreditCard
type. The compiler locates the method
charge(double) within that class (binds to
most specific), and records the signature
charge(double) in the bytecode

At runtime (during late binding), the variable
tomsVisa resolves to the RewardCard type
(since that is the type of the object in
memory). The VM cues up the signature
charge(double) and locates that method in
the RewardCard class definition.

Is there a danger that such a method will not
be found???

convince yourself that there  
is no such danger

4
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction
 9-4

 Vehicle
{Abstract}

Bus Car

9.2.4 Abstract Classes & Interfaces

 «interface»
HasArea

+ getArea() double

Circle Cylinder Rectangle

2014-­‐03-­‐11	

3	

5
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction
 9-5

Abstract Classes & Interfaces, cont.

•  How to recognize an abstract class or an interface
given its API or UML diagram.

•  Both can be used as types for declarations.

•  An abstract class cannot be instantiated. Instead,
look for a concrete class C that extends it (or for a
factory method that returns an instance of C).

•  An interface class cannot be instantiated. Instead,
look for a class C that implements it.

Key points to remember:

Example: the class Calendar.

6
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction
 9-6

9.3 Obligatory Inheritance

2014-­‐03-­‐11	

4	

7
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction
 9-7

9.3 Obligatory Inheritance

Object

Option #1

Option #2

Java uses this
one.

8
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction
 9-8

9.3.1 The Object Class

Conclusion:

All classes have the features present in Object
(unless they overrode them). They include: 
 
 - toString()

 - equals()

 - getClass()

2014-­‐03-­‐11	

5	

9
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction
 9-9

9.3.2 Case Study: Object Serialization

1.  Create an output stream connected to a file: 
FileOutputStream fos;
fos = new FileOutputStream(filename);

2.  Create an object output stream that feeds the
file output stream: 
ObjectOutputStream oos;
oos = new ObjectOutputStream(fos);

3.  Serialize an object x: oos.writeObject(x);

4.  Close the stream: oos.close();

Serialize = Write the state of an object to a stream

10
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction
 9-10

Object Serialization, cont.

FileInputStream fis;
fis = new FileInputStream(filename);

ObjectInputStream ois;
ois = new ObjectInputStream(fis);

x = (cast*) ois.readObject();

ois.close();

De-serialize = Reconstruct a serialized object

*The cast is needed because readObject returns an Object

2014-­‐03-­‐11	

6	

11
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction
 9-11

9.3.3 Generics

"  Components that take Object parameters are

very flexible because they handle any type.

"  But this flexibility thwarts all the benefits of
strong typing (casts=potential runtime errors)

"  The solution is a component that can take one
specific type but that type is client-defined

"  Such generic components provides flexibility
and strong typing.

12

Motivation

•  You need to understand the collection framework in
order to implement and to analyze any type of non-trivial
application.

•  The collection framework is specific to Java, but it
relates to a more general concept in computer science.
•  Abstract data type (ADT) : mathematical models for

certain types of data structures, used in order to describe
and analyze abstract algorithms.

•  The collection framework is just Java’s implementation
of certain ADTs.

2014-­‐03-­‐11	

7	

13

About Abstract Data Types…
•  Examples of ADTs:

•  Collection*, Deque, List*, Map*, Queue, Set*, Stack, Tree,
… (among others)

*indicates an ADT implemented in the Java platform throught the Collections Framework

•  an ADT is described solely in terms of:
•  the operations that may be performed on it (sound familiar?)
•  the mathematical constraints on the effects of the operations

(e.g., insertion should require additional memory, etc)

•  For most programming language, you can find
implementations for most or all of the ADTs;
•  if you can’t find an implementation, you will need to write it

yourself!

14

Java SE Documentation for the Collections Framework

http://docs.oracle.com/javase/7/docs/technotes/guides/collections/index.html

2014-­‐03-­‐11	

8	

15

Recap and Discussion
•  We will discuss and distinguish among:

•  When should a set be used?
•  When should a list be used?
•  When should a collection be used?
•  When should a map be used?

We will distinguish between:

•  using of services for the purposes of declaration

•  using of services for the purposes of instantiation

16

The Set<E> Interface

2014-­‐03-­‐11	

9	

17

The Set<E> Interface
•  The interface is Set<E>!
•  Implementing classes are HashSet<E> and
TreeSet<E>!

Set<String> s = new HashSet<String>();!

Set<String> s = new TreeSet<String>();!

Declaration Instantiation

18

The Set<E> Interface
•  The Set interface is “generic”, which is indicated by the

< and > in the interface name."
•  If you want to use the Set interface or the HashSet or

TreeSet classes, you need to specify the type of the
elements by writing it between < and >"

•  By doing this, the client ensures:"
•  No rogue element can be inserted"
•  No casting is needed upon retrieval"

2014-­‐03-­‐11	

10	

19

HashSet<E> vs TreeSet<E>
Suppose your set contains 128 elements, (log2 128=7)!

•  If you use a HashSet<E>, then"
•  it will take 1 step to add an additional element"
•  it will take 128 steps in the worst case to remove an

element"
•  it will take 128 steps in the worst case to test whether a

given element is found within the set "

•  If you use a TreeSet<E>, then:"
•  it will take 7 steps to add an additional element "
•  it will take 7 steps to remove an additional element"
•  it will take 7 steps to test whether a given element is

found within the set"

20

HashSet<E> vs TreeSet<E>
•  If you use a HashSet<E>, then"

•  the iterator will provide the elements in some sort of order
that may or may not be sorted"

•  If you use a TreeSet<E>, then:"
•  the iterator will provide the elements in a sorted order"

but wait – didn’t we say that sets are not sorted?!
Yes, that’s correct. The API doesn’t require this, it just
happens to be a kind of “bonus” of the TreeSet
implementation!

2014-­‐03-­‐11	

11	

21

Pros and Cons…
Version #1"
HashSet<String> s = new HashSet<String>();!

TreeSet<String> s = new TreeSet<String>();!

!

Version #2"
Set<String> s = new HashSet<String>();!

Set<String> s = new TreeSet<String>();!

!

Discuss implication of versions #1 and #2"

22

Best Practises"

•  Declaration as high up the hierarchy as possible"
•  Instantiation lower in the hierarchy"

2014-­‐03-­‐11	

12	

23

The List<E> Interface

24

ArrayList<E> vs LinkedList<E>

Suppose your list contains 128 elements (log2 128=7)!

•  If you use a ArrayList<E>, then"
•  it will take 1 step to get an element"
•  it may take up to 128 steps to add an additional element"
•  it will take 128 steps to remove an element"

•  If you use a LinkedList<E>, then:"
•  it will take 128 steps to get an element"
•  it will take 1 step to add an additional element "
•  it will take 7 steps to remove an additional element"

LinkedList<E> is better if you need to add or remove
elements"

2014-­‐03-­‐11	

13	

25

Discussion about Maps
•  A Map is a kind of generalized collection

•  The elements are pairs of objects
Sets Lists Maps

elements are: objects objects pairs of objects,
consisting of a
key and a value
(key, value)

duplicates
allowed?

no yes no, each pair
must have a
unique key

attempt to insert
duplicate?

not inserted inserted “clobber” element
that was already
present

26

Discussion about Maps
•  a pair has two elements: the key and the value

•  a dictionary is an example of a map
•  a dictionary consists of a list of pairs
•  the keys are sorted in lexicographic order

the key

the value

2014-­‐03-­‐11	

14	

27

Discussion about Maps
•  When declaring a map, we need to specify:

•  the type of the keys
•  the type of the values

!

Map<String, String> theDictionary;!

Map<String, Integer> theTally;!

28

Discussion about Maps
•  The basic operations"

•  put a pair into the Map"
•  remove a pair"
•  given a key, get its corresponding value "
•  iterate over the keys!
•  iterate over the values!

2014-­‐03-­‐11	

15	

29

Issues
•  put a pair into the Map!

•  what if the key is already present?"

•  remove a pair"
•  what if the key is not present?"

•  given a key, get its corresponding value "
•  what if the key is not present?"

30

The Map<K,V> Interface

2014-­‐03-­‐11	

16	

31

The Map<K,V> Interface

32

Instructions
•  For each of the following design scenarios, state which

parameterized type from the Collections framework is
most appropriate and why.
•  For instance, if your answer is Set<String>, state why

you chose Set for the collection and why you chose
String for the elements of the collection.

•  If you think there is more than one correct answer, then
make a decision, state your assumptions and describe
the considerations in making your choice.

2014-­‐03-­‐11	

17	

33

Instructions
•  The possible choices are:

•  Set<E>
•  List<E>
•  Map<K, V>

where:
•  E is the type of the element in the set/list, and
•  K and V are the types of the keys and values of the map,

respectively.
For the types E, K, and V, you may name class definitions
that were used in the course or invent new class names.

34

Design Scenario #1
•  Goal: represent all of the songs a particular band

intends to play at their next concert.

2014-­‐03-­‐11	

18	

35

Design Scenario #2
•  Goal: record the primary phone number for each student

in the university (which a student provides upon
registration).
•  The goal in creating this collection is to provide it to a

robo-calling service in order to issue a reminder message
to everyone about the importance of vaccinations.

•  In order to not cause undue irritation, there should only be
one robo-call per number.

36

Design Scenario #3
•  Goal: record the birth information of all of the students

presently enrolled at York university.
•  You may use the services of the BirthCertificate

class, which is shown in the UML diagram below.

2014-­‐03-­‐11	

19	

37

Design Scenario #4
•  Goal: for every family name that is found among the

students at York, record for each family name the birth
certificate of the oldest student at York who has that
family name.
•  You may use the BirthCertificate class from the

previous Design Scenario

38

Design Scenario #5
•  Goal: record, for each day of the calendar, the number

of people whose birthdate falls on that day.

•  You may use the BirthCertificate class from the previous
Design Scenario

• 

2014-­‐03-­‐11	

20	

39

Design Scenario #6
•  Goal: represent all of the credit cards that are held by all

of the students in the university.
•  The goal in creating this collection is so that the total

actual debt and potential debt of the entire student
population can be determined.

•  Assume for the moment that all privacy laws have been
suspended.

40

Design Scenario #7
•  Goal: record all observations about the vehicles that

drove west on Steeles between 9am and 10pm today
between Keele and Jane.
•  The goal in creating this collection is so that it can be

analyzed with respect to proportion of high-occupancy
vehicles (more than three passengers) and low-
occupancy vehicles (2 or fewer passengers).

•  Assume the class VehicleObservation is defined to
encapsulate all of the attributes about a particular
observation that was made of a particular vehicle (e.g., its
license plate, its speed, the time and intersection of
entering Steeles, the time and intersection of leaving
Steeles).

2014-­‐03-­‐11	

21	

41

Design Scenario #8
•  Goal: Building on design scenario #7, we wanted to

create a lookup table so that, for any vehicle license
plate, we can check the number of times it was
observed travelling west on Steeles between Keele and
Jane.

42

Design Scenario #9
•  Goal: Building on design scenario #7, suppose we

wanted to create a lookup table so that for any vehicle
license plate, we could determine all of its vehicle
observations on Steeles between Keele and Jane.

