
2014-­‐03-­‐04	

1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1720
Week 08, Lecture 13

Winter 2014 ! Thursday, Feb 27, 2014

2

General Info
•  Continuation of Chapter 9

•  Read Chapter 10 for next week

2014-­‐03-­‐04	

2	

3
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-3

For each pair, determine the relationship if any

"  Camera, Film

"  Vehicle, Car

"  Library, Book

"  Animal, Dog

"  Car, Tree

9.1 What is Inheritance?

When can you say that the
2nd is a subclass of the 1st

4
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-4

• The API of a class C may indicate that it
extends some other class P

• Every feature of P is in C

• C inherits from P.

• Child-Parent, Subclass-Superclass

• Inheritance = is-a = Specialization

• Inheritance chain, hierarchy (root,
descendents, ascendant)

9.1.1 Definition and Terminology

2014-­‐03-­‐04	

3	

5
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-5

UML

C

P

C

P

G

L

A

R

B

K N M

(c) (b) (a)

6
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-6

No Multiple Inheritance

A B

M

2014-­‐03-­‐04	

4	

7
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-7

+ k(double): void
+ l(): long
+ n(long): int

C

+ a: double
+ c: char

+ k(int): void
+ l(): long
+ m(double): void

P

+ a: int
+ b: double

Upper API Table
Lower API Table

a: double
c: char

b: double

k(double): void
l(): long
n(long): int

k(int): void

m(double): void

The API o f C

9.1.2 The Subclass API

8
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-8

•  Inherited from parent 
Lower table

•  Added as new by child 
Upper table

•  Overriding by child (same signature) 
Upper table

•  Shadowing by child (same name) 
Upper table

Feature Classification

Note: a child cannot override with a diff return!

2014-­‐03-­‐04	

5	

9
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-9

•  x = #of methods in parent’s UML

•  y = #of methods in child’s UML

•  The child’s API shows x + y methods 
(upper plus lower)

Feature Count

Is this correct?

Repeat for fields.

10

Example

•  Graphics2D is a subclass of Graphics

•  Graphics was the first implementation, in later versions,
Graphics2D was released as a more sophisticated
implementation

•  The method drawString(String, int, int) is defined
in Graphics

•  The method drawString(String, int, int) is defined
in Graphics2D

•  Thus, the method is overridden in Graphics2D

2014-­‐03-­‐04	

6	

11

Example

•  There are 6 different drawImage methods in Graphics

•  There are 2 additional drawImage methods in
Graphics2D.

•  These two have different signatures from the drawImage

methods in Graphics

•  Thus, the method is shadowed in Graphics2D

•  How many drawImage methods are available to a
Graphics2D instance?

12
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-12

When a parent is expected, a child is accepted

9.2.1 The Substitutability Principle

•  Similar to substituting “man” or “woman” in 
The fare is $5 per person

•  Similar to automatic promotion of primitives.

•  Compiler uses it in: 
- LHR / RHS of an assignment 
- Parameter passing 
- catch blocks, throws statements

2014-­‐03-­‐04	

7	

13
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-13

9.2.2 Early & Late Binding

How do you bind: r.m(…) ?

14

Early and Late Binding!

•  We have the statement: 
r.m(…); #

•  The compiler performs early binding!
•  this means to find the target to which an identifier resolves#

•  all identifiers must resolve (must correspond to a definition,
somewhere)#

•  Then we have the bytecode that is generated from r.m(…);	
•  The VM performs late binding!

2014-­‐03-­‐04	

8	

15

Early Binding, Binding with Most Specific !

•  To bind r.m(…) here’s what the compiler does:#

•  determines the declared type of r. Suppose it is C#

•  If it cannot be found, issue r cannot be resolved to a
variable. #

• locates the signature m(…) in C#

•  If more than one such m is found, it binds with the "most
specific" one. #

•  Record the signature S of the found method#

•  If no such m can be found, then issue Cannot Resolve
Symbol error.#

16

Late Binding!

•  To bind the bytecode from r.m(…) bytecode, here’s what the
VM does:#

•  cue up the signature S that was recorded in the bytecode#

•  determine the referent of r 	
•  some object will be located in run-time memory#

•  if there is no such object, issue Null Pointer Exception#

•  determine the type of r. Suppose the class is Q #

•  look for a method with the signature S in Q#

•  If Q is the same as C (same as declared type), then the
signature S certainly will be found#

•  If Q is the NOT the same as C, then Q MUST be a sub-
type of C. The signature S will be found, since it will  
be either inherited or will have been overridden.#

2014-­‐03-­‐04	

9	

17

9.2.3 Polymorphism

•  An invocation of an overridden method is
polymorphic

•  The meaning changes.

•  At compilation, the binding will be to the
parent’s method.

•  At runtime, the binding will be to the child
class’s overriding method

•  Polymorphism leads to elegant programs.  
No if statements and no redundancies.

18
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-18

9.2.3 Polymorphism

•  What if I have something like this: 
P r = new C();

•  What if I want to invoke a method on r that is present only
in the child class C, such as n()?

•  polymorphism will not be available

•  for compilation, must use a cast (down the chain) 

(C) r.n()

•  But this can lead to a runtime exception.  
To avert, use instanceof before casting 
if (r instanceof C)
 (C) r.n();

2014-­‐03-­‐04	

10	

19

import type.lib.CreditCard;
import type.lib.RewardCard;

public class L13Ex02 {

 public static void main(String[] args) {

 CreditCard tomsVisa;
 tomsVisa = new RewardCard(123458, "Tom Bentley");
 tomsVisa.charge(88);
 System.out.println(tomsVisa.toString());
 }

}

Example of polymorphism

At compile time (during early binding), the
variable tomsVisa resolves to CreditCard
type. The compiler locates the method
charge(double) within that class (binds to
most specific), and records the signature
charge(double) in the bytecode

At runtime (during late binding), the variable
tomsVisa resolves to the RewardCard type
(since that is the type of the object in
memory). The VM cues up the signature
charge(double) and locates that method in
the RewardCard class definition.

Is there a danger that such a method will not
be found???

convince yourself that there  
is no such danger

20
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-20

 Vehicle
{Abstract}

Bus Car

9.2.4 Abstract Classes & Interfaces

 «interface»
HasArea

+ getArea() double

Circle Cylinder Rectangle

2014-­‐03-­‐04	

11	

21
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-21

Abstract Classes & Interfaces, cont.

•  How to recognize an abstract class or an interface
given its API or UML diagram.

•  Both can be used as types for declarations.

•  An abstract class cannot be instantiated. Instead,
look for a concrete class C that extends it (or for a
factory method that returns an instance of C).

•  An interface class cannot be instantiated. Instead,
look for a class C that implements it.

Key points to remember:

Example: the class Calendar.

22
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-22

9.3 Obligatory Inheritance

2014-­‐03-­‐04	

12	

23
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-23

9.3 Obligatory Inheritance

Object

Option #1

Option #2

Java uses this
one.

24
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-24

9.3.1 The Object Class

Conclusion:

All classes have the features present in Object
(unless they overrode them). They include: 
 
 - toString()

 - equals()

 - getClass()

2014-­‐03-­‐04	

13	

25
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-25

9.3.2 Case Study: Object Serialization

1.  Create an output stream connected to a file: 
FileOutputStream fos; 
fos = new FileOutputStream(filename);

2.  Create an object output stream that feeds the
file output stream: 
ObjectOutputStream oos; 
oos = new ObjectOutputStream(fos);

3.  Serialize an object x: oos.writeObject(x);

4.  Close the stream: oos.close();

Serialize = Write the state of an object to a stream

26
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-26

Object Serialization, cont.

FileInputStream fis; 
fis = new FileInputStream(filename); 
 
ObjectInputStream ois; 
ois = new ObjectInputStream(fis); 
 
x = (cast*) ois.readObject(); 
 
ois.close();

De-serialize = Reconstruct a serialized object

*The cast is needed because readObject returns an Object

2014-­‐03-­‐04	

14	

27
Copyright © 2006 Pearson Education Canada Inc.
Java By Abstraction

 9-27

9.3.3 Generics

"  Components that take Object parameters are

very flexible because they handle any type.

"  But this flexibility thwarts all the benefits of
strong typing (casts=potential runtime errors)

"  The solution is a component that can take one
specific type but that type is client-defined

"  Such generic components provides flexibility
and strong typing.

