
2014-‐03-‐04	

1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1720
Week 08, Lecture 12

Winter 2014 ! Tuesday, Feb 25, 2014

2

General Info
•  Welcome back from reading week!

•  Assigned reading was Chapter 9

•  Here’s our plan
•  Complete (conceptual) exercises related to Ch 9 material

(Tue Feb 25, Thu Feb 27)
•  Complete (conceptual) exercises related to Ch 10

material (Tue Mar 04, Thu Mar 06)
•  Complete lab exercises related to building collections into

our game software, add in interactivity

•  Labtest on Thu Mar 13/Fri Mar 14: ActionListener,
Collections

•  Written test on Mar 20th will cover Ch9 and Ch10.

2014-‐03-‐04	

2	

3

Game software: Recap
•  One observer design pattern is implemented

•  a Timer instance is our observee; it dispatches action
events to trigger frame refreshes

•  a FrameAdvancer instance is our observer; it receives
these events and redraws the frame

•  Encapsulation/Abstraction:
•  the “logic” that specifies what actions are happening in

the “game world” are located within the FrameAdvancer
class definition

•  the logic that specifies how the entities in the game world
get shown on the frame are located within the
FrameAdvancer class definition

•  we will work on abstracting these components
away…

4

Overview
•  Chapter 9 topic: Inheritance

•  We have been making use of inheritance concepts all
throughout the course

•  Now we will revisit the concepts

2014-‐03-‐04	

3	

5

Questions about Inheritance
•  General properties of subclasses: RQ 9.1 – 9.7, 9.29

•  Rationale for subclass design: RQ 9.8 – 9.9

•  Substitutability principle: RQ 9.10 – 9.12

•  Early vs Late Binding: RQ 9.13 – 9.19

•  Manual Casting (in Subclass Context): RQ 9.20 – 9.23

•  Interfaces, Abstract Classes: RQ 9.24, 9.27 – 9.28

•  Instantiation (in Subclass Context): RQ 9.25 – 9.26

•  Strong typing: RQ 9.30 – 9.32

6

Review
Chapter 1, In More Depth 1.6, p. 24

What is a “type”?

ANSWER:

2014-‐03-‐04	

4	

7

Non-primitive types
•  A type is as a type does

•  A class definition defines a type

•  An interface defines a type

•  An abstract class definiton defines a type

•  In strongly typed programming languages, variables
must be declared to be of a particular type in order to be
used
•  this presents some limitations, but provides many benefits

8

Examples of flexibility at runtime
Consider the following:

for (Shape s : myCollection) {

 s.draw(graphics);
}

•  the draw method is defined for all Shape objects.

•  at runtime, the VM doesn’t need to know which specific Shape
objects are in the collection

•  the design of the various different types of shape makes use of
clever delegation.

•  Each one of the different types has its own way of deciding how it
should be drawn, when given a Graphics2D object

2014-‐03-‐04	

5	

9

The “Tension”
•  At compilation:

•  the compiler looks to the variable’s type to determine
whether a statement is syntactically and semantically
correct

•  At runtime:
•  the VM uses the services defined by the object’s type to

perform the specified operations.

•  We want the benefits of the compiler’s type checking,
AND we want the benefits of flexible run-time behaviour
•  polymorphism is the solution to this

10

Questions about Inheritance
•  General properties of subclasses: RQ 9.1 – 9.7, 9.29

•  Rationale for subclass design: RQ 9.8 – 9.9

•  Substitutability principle: RQ 9.10 – 9.12

•  Early vs Late Binding: RQ 9.13 – 9.19

•  Manual Casting (in Subclass Context): RQ 9.20 – 9.23

•  Interfaces, Abstract Classes: RQ 9.24, 9.27 – 9.28

•  Instantiation (in Subclass Context): RQ 9.25 – 9.26

•  Strong typing: RQ 9.30 – 9.32

2014-‐03-‐04	

6	

11

General Properties
RQ9.1 How do you determine whether a class extends
another… :

•  given the class’ API?

•  given a UML class diagram?

•  given the code (class definition) written in Java?

ANSWER:

12

General Properties
Identify parent-child class relationships in our game
codebase…

What can you say about the features of the child (cf the
parent’s features)?

*a class’s features are its attributes and methods

ANSWER:

2014-‐03-‐04	

7	

13

General Properties
RQ9.5 Can a child class have more than one parent
class?

Can a parent class have multiple child classes?

ANSWER:

14

General Properties

Identify, in the codebase, a place where a child class has a
method that has the same name as a parent’s method

ANSWER:

2014-‐03-‐04	

8	

15

General Properties
RQ9.6 If a subclass has a method with the same name
as a parent’s method, which method will appear in the
subclass API and in which table?

Will your answer change if the child’s method has the
same parameter list as that of the parent?

ANSWER:

16

About the methods in a child class…
They fall under the following three categories:

•  new method
•  if the method signature is defined ONLY in the child class and

not defined in parent (applies even if method name is found in
parent, but signature if different)

•  inherited method
•  if the method signature defined ONLY in the parent class; this

method is also available to child instances

•  overridden method
•  if method signature defined in the parent class AND also

defined in the child class
•  the child class provides another version of the method

functionality that overrides the parent’s method
functionality

2014-‐03-‐04	

9	

17

About the fields in a child class…
They fall under the following three categories:

•  new field
•  if the field is defined ONLY in the child class and not defined in

parent

•  inherited field
•  if the field defined ONLY in the parent class; the child can use it

as its own

•  overshadowed field
•  if a field name in the child is the SAME as a field in the parent

(regardless of type). Parent field cannot be used, since the
child’s field will block it

18

General Properties
RQ9.29 If class C extends class P, is C a descendant of
the Object class?

What kind of descendant class?

A direct descendant or indirect descendant?

ANSWER:

2014-‐03-‐04	

10	

19

Review

This description of “type” was intended for primitive types.

How do we extend the description to capture non-primitive
types?

ANSWER:

20

Substitutability
RQ9.10 What is the substitutability principle?

In Java? In everyday life? (RQ9.12)

ANSWER:

2014-‐03-‐04	

11	

21

Substitutability
Identify places within the codebase in which the
substitutability principle has been used

ANSWER:

22

Substitutability
RQ9.11 In which contexts can the substitutability principle
be applied?

ANSWER:

2014-‐03-‐04	

12	

23

Binding
What is meant by early binding?

What is meant by late binding?

ANSWER:

