
2/10/2014	

1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1720
Week 05, Lecture 09

Winter 2014 ! Tuesday, Feb 4, 2014

2

Objectives for this class meeting
•  Cover 2D Graphics topic: displaying images

•  Timer class, a basic ActionListener

2/10/2014	

2	

3

Big picture recap…
•  via the services of the Picture class

•  our app asks the window manager for a window
•  the constructor creates and places a blank “canvas” inside

this window
•  this canvas has an associated Graphics2D object, which we

can access via createGraphics()
•  via the services of the Graphics2D class

•  we use the services of this class to modify the current
settings

•  we use the services of this component to perform drawing
of shape primitives and text

The VM and the window manager coordinate in order to
do the drawing

4

Shooter Games…
•  Shooting is a basic behaviour that is a defining

characteristic of shooter games

•  We will employ encapsulation:
•  encapsulate the shooter
•  encapsulate the projectile
•  encapsulate the target

•  Shooting entails:
•  waiting for user input
•  rendering the trajectory over a sequence of frames
•  collision behaviours

2/10/2014	

3	

5

Frame Drawing…
•  We need functionality to implement repeated frame

drawing

•  frames need to be drawn whether the user is performing
actions or not

•  we need a service that will dispatch events repeatedly,
each of which signals “draw new frame”

6

Suspension of Disbelief
•  Humans will suspend judgment about the implausibility of

a narrative in order to engage with the material
•  this alternative is that human does not suspend judgment,

disengages and rejects premise of the material

•  Video games require suspension of disbelief
•  game mechanics are unrealistic (by design or by

technological limitation)

•  Designs seek to support suspension of disbelief and try to
remove aspects that interfere with suspension of disbelief
•  things that interfere: high frame rate, uncanny valley

2/10/2014	

4	

7

Frame Rate
•  The speed at which frames are drawn is called the

frame rate
•  TV: 60 fps
•  Movies: 24 fps
•  The Hobbit 3D experiment: 48 fps
•  Lower threshold : 10-12 fps, phi phenomenon
•  Upper threshold : ~66 fps

•  A key concept: suspension of disbelief
•  humans will suspend judgment about the implausibility of a

narrative in certain conditions, but not others
•  characteristics of the medium can trigger this

8

How we implement frames

•  We will have two “players” here
•  one that says when it is time to redraw
•  the other says what happens to the screen when it is time

to redraw

Dude, redraw
the frame

Hey Graphics2D –
here’s what we’re

gonna do…

2/10/2014	

5	

9

How we implement frames

•  What happens to the screen when it is time to redraw
•  draw a red dot at the current point
•  update the current point to a new position, moving along

the diagonal
graphics.draw(dot);
theCanvas.repaint();
p = new Point(p.x + 1, p.y + 1);
dot = new Ellipse2D.Double(p.x, p.y, DIA, DIA);

Hey Graphics2D –
here’s what we’re

gonna do…

Dude, redraw
the frame

this code can be found in Lab05

10

public class FrameAdvancer implements ActionListener {
 private Picture theCanvas;
 private Graphics2D graphics;
 private Point p;
 private Shape dot;
 private final int DIA = 10;
 private long timeOfInstantiation = System.currentTimeMillis();

 public FrameAdvancer(Picture gameCanvas) {
 this.theCanvas = gameCanvas;
 p = new Point(0, 0);
 dot = new Ellipse2D.Double(p.x, p.y, DIA, DIA);
 graphics = theCanvas.createGraphics();
 graphics.setPaint(Color.RED);
 }

 @Override
 public void actionPerformed(ActionEvent ae) {
 graphics.draw(dot);
 theCanvas.repaint();
 p = new Point(p.x + 1, p.y + 1);
 dot = new Ellipse2D.Double(p.x, p.y, DIA, DIA);
 }

}

this code can be found in Lab05

2/10/2014	

6	

11

How we implement frames

•  We need functionality to implement repeated frame
drawing
•  we need to define the inter-frame interval (msec)
•  we instantiate a Timer object
•  this launches a new thread
•  the thread fires events at the specified inter-frame interval

Dude, redraw
the frame

Hey Graphics2D –
here’s what we’re

gonna do…

12

How we implement frames

FrameAdvancer frameAdvancer = new FrameAdvancer(pict);

// change this value to indicate the desired number of frames per
second
final int NUM_FRAME_PER_SEC = 30;
// here we determine how much time each frame should spend on-
screen
final int NUM_MSEC_PER_SEC = 1000;
int msecPerFrame = NUM_MSEC_PER_SEC / NUM_FRAME_PER_SEC;

Timer frameAdvancerTimer = new Timer(msecPerFrame, frameAdvancer);
frameAdvancerTimer.start();

this code can be found in Lab05

2/10/2014	

7	

13

How to “tune your radio”…
1. Identify the observee component

•  this is the component that is dispatching events
that you care about

2. Create an observer component
•  this will be a component that is capable of

“listening” to those types of events
•  this is like “tuning” to the station

3. Use the services of the observee to tell it
that it has an observer

14

The Observer Pattern
•  Create an the “observee” component (the component

that will be observed)
•  this is the component that is dispatching events that you

care about
•  e.g., the Timer object dispatches ActionEvent events

•  Create an observer component
•  this will be a component that is capable of “listening” to

those types of events
•  e.g., the FrameAdvancer is an ActionListener

•  Use the services of the observee to tell it that it has an
observer
•  e.g., we provide the FrameAdvancer to the

constructor of Timer

2/10/2014	

8	

15

About Events in General…

•  Events are objects that encapsulate some sort
of external “happening”
•  the user did something

•  e.g., performed a mouse or keyboard action
•  the window manager did something

•  e.g., opened a window, shifted focus

16

Java’s Event Class Hierarchy

EventObject

AWTEvent

ActionEvent ComponentEvent

InputEvent WindowEvent

MouseEvent KeyEvent

A subset of Java’s Event Class
Hierarchy is shown here	

	

See Java API for full hierarchy	

2/10/2014	

9	

17

Back to the sample app…

•  Can you identify the observer and the
observee?

18

Tasks

•  slow down the projectile to have a slower
trajectory"

•  make the projectile expire before it reaches the
edge of the screen"

