CSE1720

Week 04, Lecture 07

Winter 2014 € Tuesday, January 28, 2013

Objectives for this class meeting

* Cover basic information on 2D Graphics
» we will need this for designing our game

UNIVERSITE
||||||||||

Basic Graphics

« Background Material:
* sec 8.1.5, lab L8.2 (pp.329-332).
* The Java Tutorials, Trail: 2D Graphics

* http://docs.oracle.com/javase/tutorial/2d/index.htmli

* These lecture slides provide a basic overview of that
material, enough to get you started with the lab
exercises

UNIVERSITE
||||||||||

The Big Picture

* apps that use graphics must work with the
Window Manager (WM)

* In order to understand how to use graphics, you
should have a basic understanding of the WM

UNIVERSITE
||||||||||

The Window Manager

The WM is used to implement GUI-based user
Interfaces

The WM is part of the operating system
* (e.g., Windows, Mac OS X, Linux has many, such as
Gnome, XFCE, ...)

The WIMP paradigm: Windows, Icons,
Menus, Pointers

If an app wishes to use graphics, then the app
requires a container (window) for the graphics

UNIVERSITE
||||||||||

How the WM works (in a nutshell)

* The app requests a window from the window manager
» The window manager decides whether a window is
shown

It is not up to the app, the app cedes autonomy to the WM
The WM allows the user to minimize, overlap, maximize the
windows on the desktop

* The app can ask the WM about its screen real estate
(which can change over time)
* The app tells the WM that it is in need of redrawing
(repaint);
» the WM decides to redraw all of some of its windows

UNIVERSITE
||||||||||

Separation of Concerns

* The app specifies what should be drawn (the
WHAT)

 The WM actually does the drawing (the HOW)

* As the app developer, you need to understand
this separation

specification of what
should be shown

graphically functionailty that actually graphic display
accomplishes the >

graphical rendering

UNIVERSITE
||||||||||

Graphics2D class services

» the Graphics2D object encapsulates the "HOW?” part of
the drawing

» the complexity of the “HOW?” is hidden from the clients

 all of the low level stuff that concerns graphics rendering
IS hidden, e.g., how to translate drawing coordinates to
screen coordinates, how to set the sub-pixel values In
order to accomplish the different colours, etc

specification of what
should be shown

graphically graphic dLspIay

Graphics2D

UNIVERSITE
||||||||||

Graphics2D services

* an app that has a window =» can obtain access to the
window’s Graphics2D object

* an app that does not have a window =» no access to a
Graphics2D object

* The Graphics2D class is part of java.awt (Abstract
Window Toolkit)

* This Graphics2D class extends the Graphics class to
provide more sophisticated control over geometry,
coordinate transformations, color management, and text

layoult. VORK

UNIVERSITE
||||||||||

10

Obtaining the Graphics2D reference

Suppose we have a Picture object with reference myPict

Obtain a reference to window’s Graphics2D object:
Graphics2D graphicsObj = myPict.createGraphics();

How do we use the graphics2D object?

UNIVERSITE
||||||||||

Examples

Suppose we have a Picture object with reference myPict

Obtain a reference to window’s Graphics2D object:
Graphics2D graphicsObj = myPict.getGraphics();

Now we specify to the graphics2D object what primitives
we want drawn

Shape is part of java.awt as well.

Shape shapel;
// instantiate shapel..
graphicsObj.draw(shapel);

w graphicsObj.fill (shapel); TR

12

Instantiating a Shape object

int width = 20;
int height = 50;
int xPos = 5;
int yPos = 15;
Rectangle2D.Double shapel =
new Rectangle2D.Double(xPos, yPos, width, height);

The Rectangle shape is 20 units wide and 50 units high.

The upper left hand corner is anchored at (5,15)

UNIVERSITE
||||||||||

13

Instantiating a Shape object

Rectangle2D.Double shapel =
new Rectangle2D.Double(xPos, yPos, width, height);

The Rectangle2D.Double shape is 20 units wide and 50 units
high.

What are these units?

The units are “coordinate units” in the user space.

UNIVERSITE
||||||||||

User Space

» User space is the coordinate space in which graphics
primitives are specified
* a device-independent logical coordinate system.
» the coordinate space that your program uses.

* The origin of user space is the upper-left corner of the
component’s drawing area.

» All geometries passed into Java 2D rendering routines
are specified in user-space coordinates.

 When it is time to render the graphics, a transformation
IS applied to convert from user space to device space.

14 STV ER ST
http://docs.oracle.com/javase/tutorial/2d/overview/coordinate.html

Device Space

» Device space — The coordinate system of an output
device such as a screen, window, or a printer

* Your app can invoke the following to determine the

screen resolution in dots per inch:
Toolkit.getDefaultToolkit().getScreenResolution()

* Depending on the screen resolution, one point in user space may
translate to several pixels in device space

» If your screen resolution is 72, then there is likely to be 72
“coordinate units” in user space per inch. But this can vary.

15 e AR
http://docs.oracle.com/javase/tutorial/2d/overview/coordinate.html

16

User Space

* The client specifies the graphic primitives to be drawn in

user space (in “coordinate units”)

 Graphics2D class services translates the coordinates

In user space to coordinates in device space (in pixels)

UNIVERSITE
||||||||||

Graphics2D K >—

i see LO7 Ex2

GraphicsConfiguration |many other attributes

GraphicsDevice

*

DisplayMode

....current DisplayMode has width, height

18

Instantiating a Shape object

Rectangle2D.Double shapel =
new Rectangle2D.Double(xPos, yPos, width, height);

The name of the class is weird — there is a dot in the middle
of it.

Rectangle2D.Double is a subclass of the class Rectangle2D
Rectangle2D Is a subclass of the class Shape

Neither Shape nor Rectangle2D have constructors

UNIVERSITE
||||||||||

19

“When a parent is expected, a child is
accepted” (Ch 9)

This is the “substitutability principle”

Rectangle2D.Double shapel =
new Rectangle2D.Double(xPos, yPos, width, height);

Rectangle?2D shapel =

new Rectangle2D.Double(xPos, yPos, width, height);
Shape shapel =

new Rectangle2D.Double(xPos, yPos, width, height);

20

Graphics2D primitives

» basic geometric shapes: draw(Shape) fill(Shape)
* [ines: drawLine(int, int, int, int)

* text: drawString(String, int, 1int)

UNIVERSITE
||||||||||

Shape Primitives

(%,y) width (%,y)
height height
Rectangle2D
(%,¥) (x,¥)
height
Ellipse2D

21

arc

width width
Ve "\ [-arc height
RoundRectangle2D
width
angleStart
Arc2D
YORK

Shape Primitives

ref. http://java.sun.com/developer/technicalArticles/GUl/java2d/java2dpart1.html

(x1,y1)
(x1, y1) (x2, y2)

4 QuadCurve2D

) (x2,y2) (ctrix, ctrly)
Line2D

(ctrix2, ctriy2)
"

(x1,y1)
(x2,y2)

A CubicCurve2D
(ctrix1, ctrix2)

UNIVERSITE
22 22 UNIVERSITY

23

Current Settings (ll)

Additional settings:

 the way the strokes are joined together Agom BEVEL

+ the appearance of the ends of lines Ay
OIN MITER

A JOIN ROUND

@S CAP BUTT
@S CAP ROUND

s CAP SQUARE

* The current translation, rotation, scaling, and shearing values

UNIVERSITE
||||||||||

Current Settings (1)

* when any primitive is drawn, it is drawn with the current
settings of the Graphics2D object.

* any primitive that is drawn is drawn with the current
settings until the settings change

 the settings are determined by attribute values
- thus we say that the state of the Graphics2D
object determines the drawing settings.

The settings include:

* the Paint to be used (the colour of the drawing pen)
* the Stroke to be used (the width of the drawing pen)
* the Fill to be used (the pattern used to fill the %ﬁ?{su

IIIIIIIIII

24 UNITVERSITY

Example: changing pen colour

graphicsObj.setPaint(Color.BLUE);
graphicsObj.draw(shapel);
graphicsObj.setPaint(Color.RED);
graphicsObj.draw(shapel);

This draws a red rectangle on top of the blue rectangle

Any shape that is drawn is drawn with the current settings
until the settings change

UNIVERSITE
||||||||||

About Colour

» Paint controls the colour of the drawing pen

 The default colour is WHITE

* Here's how to change it (newer, better version):

graphicsObj.setPaint(Color.BLUE);

 An older version:

graphicsObj.setColor(Color.BLUE);

the setPaint method takes a Paint argument, and a
Color object can fit the bill! YORK

UNIVERSITE
26 UNIVERSITY

27

Here I1s a fancier fill

Point pl = new Point (0, 0);
Point p2 = new Point (50, 50);
GradientPaint paintl =
new GradientPaint(pl, Color.RED, p2, Color.MAGENTA,
true);
graphicsObj.setPaint(paintl);

Try it yourself!

UNIVERSITE
||||||||||

28

Example: changing pen width

» Stroke controls the width of the drawing pen

* The default width is 1 unit (typically 1 pixel wide, so it is
teeny-tiny)

* Here’s how to change it:

BasicStroke newStroke = new BasicStroke(4.0);

graphicsObj.setStroke(newStroke);

Since Stroke is the parent class of BasicStroke, you
can also write:

Stroke newStroke = new BasicStroke(4.0);

graphicsObj.setStroke(newStroke); YORK

UNIVERSITE
||||||||||

29

Can we move a Shape?

Once we instantiate a shape, there is no way to "move” it.

Instead, just instantiate new shapes with different anchor
points

* You can move the origin of the coordinate system up/
down or left/right

* this will make it appear as though the anchor of the
rectangle has moved

* this is not recommended at this point, since we want a
fixed origin

UNIVERSITE
||||||||||

30

About transformations

Once a shape is specified in user space, then any number
of transformations can be applied to it

For instance, here is a shear transformation of a rectangle

There are also transformations to rotate and scale.

UNIVERSITE
||||||||||

31

To Do:

* Practise using all of these various methods and
experiment on your own.

* Complete the lab exercise lab L8.2 (pp.329-332).

« Do exercise 8.20

UNIVERSITE
||||||||||

