
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1720
Week 04, Lecture 07

Winter 2014 ! Tuesday, January 28, 2013

2

Objectives for this class meeting
•  Cover basic information on 2D Graphics

•  we will need this for designing our game

3

Basic Graphics
•  Background Material:

•  sec 8.1.5, lab L8.2 (pp.329-332).

•  The Java Tutorials, Trail: 2D Graphics

•  http://docs.oracle.com/javase/tutorial/2d/index.html

•  These lecture slides provide a basic overview of that
material, enough to get you started with the lab
exercises

4

The Big Picture

•  apps that use graphics must work with the
Window Manager (WM)!

•  in order to understand how to use graphics, you
should have a basic understanding of the WM"

5

The Window Manager

•  The WM is used to implement GUI-based user
interfaces "

•  The WM is part of the operating system "
•  (e.g., Windows, Mac OS X, Linux has many, such as

Gnome, XFCE, …)"
•  The WIMP paradigm: Windows, Icons,

Menus, Pointers"
•  If an app wishes to use graphics, then the app

requires a container (window) for the graphics"

6

How the WM works (in a nutshell)
•  The app requests a window from the window manager"
•  The window manager decides whether a window is

shown "
•  It is not up to the app, the app cedes autonomy to the WM "
•  The WM allows the user to minimize, overlap, maximize the

windows on the desktop"
•  The app can ask the WM about its screen real estate

(which can change over time)"
•  The app tells the WM that it is in need of redrawing

(repaint); "
•  the WM decides to redraw all of some of its windows"

7

Separation of Concerns

•  The app specifies what should be drawn (the
WHAT)"

•  The WM actually does the drawing (the HOW)"

•  As the app developer, you need to understand
this separation"

"

functionailty that actually
accomplishes the

graphical rendering

specification of what
should be shown
graphically graphic display

8

Graphics2D class services
•  the Graphics2D object encapsulates the “HOW” part of

the drawing"

•  the complexity of the “HOW” is hidden from the clients"
•  all of the low level stuff that concerns graphics rendering

is hidden, e.g., how to translate drawing coordinates to
screen coordinates, how to set the sub-pixel values in
order to accomplish the different colours, etc"

Graphics2D

specification of what
should be shown
graphically graphic display

9

Graphics2D services
•  an app that has a window " can obtain access to the

window’s Graphics2D object "

•  an app that does not have a window " no access to a
Graphics2D object "

•  The Graphics2D class is part of java.awt (Abstract
Window Toolkit)

•  This Graphics2D class extends the Graphics class to
provide more sophisticated control over geometry,
coordinate transformations, color management, and text
layout.

10

Obtaining the Graphics2D reference

Suppose we have a Picture object with reference myPict

Obtain a reference to window’s Graphics2D object:
Graphics2D graphicsObj = myPict.createGraphics();

How do we use the graphics2D object?

11

Examples
Suppose we have a Picture object with reference myPict

Obtain a reference to window’s Graphics2D object:
Graphics2D graphicsObj = myPict.getGraphics();

Now we specify to the graphics2D object what primitives
we want drawn

Shape is part of java.awt as well.

Shape shape1;
// instantiate shape1…
graphicsObj.draw(shape1);
graphicsObj.fill(shape1);

12

Instantiating a Shape object
int width = 20;

int height = 50;

int xPos = 5;

int yPos = 15;

Rectangle2D.Double shape1 =

 new Rectangle2D.Double(xPos, yPos, width, height);

The Rectangle shape is 20 units wide and 50 units high.

The upper left hand corner is anchored at (5,15)

13

Instantiating a Shape object
Rectangle2D.Double shape1 =

 new Rectangle2D.Double(xPos, yPos, width, height);

The Rectangle2D.Double shape is 20 units wide and 50 units
high.

What are these units?

The units are “coordinate units” in the user space.

14

User Space
•  User space is the coordinate space in which graphics

primitives are specified"
•  a device-independent logical coordinate system. "
•  the coordinate space that your program uses. "
•  The origin of user space is the upper-left corner of the

component’s drawing area."

•  All geometries passed into Java 2D rendering routines
are specified in user-space coordinates."

•  When it is time to render the graphics, a transformation
is applied to convert from user space to device space.  

http://docs.oracle.com/javase/tutorial/2d/overview/coordinate.html

15

Device Space
•  Device space – The coordinate system of an output

device such as a screen, window, or a printer"

•  Your app can invoke the following to determine the
screen resolution in dots per inch:
Toolkit.getDefaultToolkit().getScreenResolution()

•  Depending on the screen resolution, one point in user space may
translate to several pixels in device space"

•  If your screen resolution is 72, then there is likely to be 72
“coordinate units” in user space per inch. But this can vary.

"
http://docs.oracle.com/javase/tutorial/2d/overview/coordinate.html

16

User Space
•  The client specifies the graphic primitives to be drawn in

user space (in “coordinate units”)

•  Graphics2D class services translates the coordinates
in user space to coordinates in device space (in pixels) "

17

see L07_Ex2

18

Instantiating a Shape object
Rectangle2D.Double shape1 =

 new Rectangle2D.Double(xPos, yPos, width, height);

The name of the class is weird – there is a dot in the middle
of it.

Rectangle2D.Double is a subclass of the class Rectangle2D

Rectangle2D is a subclass of the class Shape

Neither Shape nor Rectangle2D have constructors

19

“When a parent is expected, a child is
accepted” (Ch 9)

This is the “substitutability principle”

Rectangle2D.Double shape1 =

 new Rectangle2D.Double(xPos, yPos, width, height);

Rectangle2D shape1 =

 new Rectangle2D.Double(xPos, yPos, width, height);

Shape shape1 =

 new Rectangle2D.Double(xPos, yPos, width, height);

20

Graphics2D primitives

•  basic geometric shapes: draw(Shape) fill(Shape)

•  lines: "drawLine(int, int, int, int)"

•  text: "drawString(String, int, int)"

21

Shape Primitives"

21"

22

Shape Primitives"

22"

ref: http://java.sun.com/developer/technicalArticles/GUI/java2d/java2dpart1.html

23

Current Settings (II)
Additional settings:"
•  the way the strokes are joined together "

•  the appearance of the ends of lines 
 
 
 
 
"

•  The current translation, rotation, scaling, and shearing values"

24

Current Settings (I)
•  when any primitive is drawn, it is drawn with the current

settings of the Graphics2D object.
•  any primitive that is drawn is drawn with the current

settings until the settings change
•  the settings are determined by attribute values  

thus we say that the state of the Graphics2D
object determines the drawing settings."

The settings include:
•  the Paint to be used (the colour of the drawing pen)
•  the Stroke to be used (the width of the drawing pen)
•  the Fill to be used (the pattern used to fill the shapes)

25

Example: changing pen colour
!

graphicsObj.setPaint(Color.BLUE);
graphicsObj.draw(shape1);
graphicsObj.setPaint(Color.RED);
graphicsObj.draw(shape1);

This draws a red rectangle on top of the blue rectangle

Any shape that is drawn is drawn with the current settings
until the settings change

26

About Colour
•  Paint controls the colour of the drawing pen

•  The default colour is WHITE

•  Here’s how to change it (newer, better version):
!

graphicsObj.setPaint(Color.BLUE);  
 
!

•  An older version:

graphicsObj.setColor(Color.BLUE);!

the setPaint method takes a Paint argument, and a
Color object can fit the bill!

27

Here is a fancier fill
Point p1 = new Point(0, 0);  
Point p2 = new Point(50, 50);  
GradientPaint paint1 =  

!new GradientPaint(p1, Color.RED, p2, Color.MAGENTA,
true);  
graphicsObj.setPaint(paint1);!

Try it yourself!

28

Example: changing pen width
•  Stroke controls the width of the drawing pen

•  The default width is 1 unit (typically 1 pixel wide, so it is
teeny-tiny)

•  Here’s how to change it:

BasicStroke newStroke = new BasicStroke(4.0);!

graphicsObj.setStroke(newStroke);!

!

Since Stroke is the parent class of BasicStroke, you
can also write:

Stroke newStroke = new BasicStroke(4.0);!

graphicsObj.setStroke(newStroke);!

29

Can we move a Shape?
Once we instantiate a shape, there is no way to “move” it.

Instead, just instantiate new shapes with different anchor
points

•  You can move the origin of the coordinate system up/

down or left/right
•  this will make it appear as though the anchor of the

rectangle has moved
•  this is not recommended at this point, since we want a

fixed origin

30

About transformations
Once a shape is specified in user space, then any number
of transformations can be applied to it

For instance, here is a shear transformation of a rectangle

There are also transformations to rotate and scale.

31

To Do:
•  Practise using all of these various methods and

experiment on your own.

•  Complete the lab exercise lab L8.2 (pp.329-332).

•  Do exercise 8.20

