
1/21/2014	

1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1720
Week 02, Lecture 04

Winter 2014 ! Thursday, Jan 16, 2014

2

Objectives for this class meeting
1.  Complete and Discuss questions about Exceptions,

sec 11.4

2.  In-class review of sec 8.1.1-8.1.4 “Aggregation”
•  focus on aggregations that are collections

1/21/2014	

2	

3 "
Copyright ©
2006 Pearson
Education
Canada Inc.

"Java
By Abstraction

" 11-3"

11.4 Building Robust Applications!

•  Thanks to the compiler, checked exceptions are never
"unexpected"; they are trapped or acknowledged!

•  Unchecked exceptions (often caused by the end user)
must be avoided and/or trapped!

•  Defensive programming relies on validation to detect
invalid inputs!

•  Exception-based programming relies on exceptions!
•  Both approaches can be employed in the same app!

•  Logic errors are minimized through early exposure, e.g.
strong typing, assertion, etc.!

Key points to remember:!

4

Building Robust Apps
•  correctness : the degree to which software conforms to

its specification

•  robustness : the ability of a software product to cope
with unusual situation
•  good coping – graceful, tolerant
•  bad coping : crash

•  Even an app that never crashes might still be incorrect

1/21/2014	

3	

5

Building Robust Apps
•  The goal of robustness means that we don’t want our

software to crash

•  We will use all sorts of services, many of which
potentially throw exceptions

•  unhandled exceptions cause apps to crash

•  crashing app == not robust app.

•  Do we rely on our human abilities to track all of these
potential sources of exceptions?
•  Humans make mistakes, even with the best of intentions.

6

Building Robust Apps
•  what approach should we use to ensure that our app

doesn’t crash?

•  approach #1 – make sure the exceptions never get
thrown in the first place!
•  need to read all pre-conditions, see which parameter

values trigger exceptions, and then avoid such parameter
values

•  build in a whole bunch of if-then clauses and other ways
of validation for parameters, before invoking services

•  approach #2 – let exceptions happen
•  make sure all of the necessary handlers are in place

1/21/2014	

4	

7

Analysis : Approach #1
•  suppose our goal is to make sure the exceptions never

get thrown in the first place
•  need to read all pre-conditions, see which parameter

values trigger exceptions, and then avoid such parameter
values

•  this is prone to error (something can easily be missed)
•  this will be tedious and lengthy (can you imagine how

much extra code will be needed? can you image how
difficult the code will be to read and understand?)

•  this is not so clever – you are duplicating the functionality
that is already implemented in the services

•  CONCLUSION: don’t use this approach

8

Analysis : Approach #2
•  suppose our goal is to let exceptions happen and then

make sure there are handlers
•  many exceptions will be checked exceptions, which

means the compiler will check that a handler has been
added

•  compiler will not enforce handling of unchecked
exceptions, so onus is still on the implementer to ensure
that handler has been added

•  usually more compact to deal with exception rather than
to prevent it from happening

•  CONCLUSION: use this approach

1/21/2014	

5	

9

•  topic shift into collections now

10

Questions about Collections
•  What is a collection?  

What is an aggregate with variable multiplicity?  
How are these questions related?

•  RQ8.19 What does variable multiplicity mean? 
How is aggregation depicted in UML, both with fixed
and with variable multiplicity?

•  RQ8.20 If a collection is statically allocated, then what
should be passed to its constructor?

•  RQ8.21 Can you add an element to a collection even if
it is already in it?

1/21/2014	

6	

11

Questions about Collections
•  RQ8.22 What happens if you attempt to add an element

to a full, statically-allocated collection?

•  RQ8.23 What is a traversal?

•  RQ8.24 How do you determine the number of elements
in a collection if it supports indexed traversals?

•  RQ8.25 How do you determine the number of elements
in a collection if it supports iterator-based traversals?

•  RQ8.26 (a) Explain how a traversal can be used to
perform a search. (b) Why are traversal-based searches
called exhaustive?

12

OK – those are many questions.

Let’s talk about some answers

The first question… What is a collection?!

1/21/2014	

7	

13

About Collections… 
"

13"

The course material concerns several topics about
collections 
e.g., collection traversals, static/dynamic allocation, etc. "

These concepts will make a lot more sense if you have a
crystal clear understanding about what a collection actually
is!

14

So what is a collection anyway?  
"

14"

Let’s start with:"

! It is a class instance (an object)"

! The class instance has attributes (elements)"

! The elements are non-primitive, non-String"

!

! These three things define an aggregation!

! So a collection is an aggregation!

! BUT NOT ALL AGGREGATIONS ARE COLLECTIONS!

1/21/2014	

8	

15

So what is a collection anyway?  
"

15"

Let’s start with what a collection is NOT."

A collection is NOT a set."

! A set is, by definition, a collection that does not contain
duplicate elements."

A collection is NOT a list."

! A list is, by definition, an ordered collection."

"

You can’t use the term you are trying to define in the
definition!!

16

So what is a collection anyway?  
"

16"

Instead of trying to articulate what a collection IS 
it is better to articulate what a collection DOES!

!

This is a Forrest Gump way of  
defining something:"

A collection is what a collection does!

1/21/2014	

9	

17

So what does a collection do?  

1.  It exists as a class instance."

2.  It has elements."
•  and these elements are understood to be non-

primitive, non-String"

3.  It allow clients to query its size"

4.  It allow clients add and remove elements"

5.  It allow clients to traverse the elements"
•  at least one way must be provided, although

there are several possible ways"

18

A diagnostic test:  
Is this object a collection? "

18"

 Is it a class instance?!

Does it have elements?!

Can I traverse those elements?!

Does it let me add elements?!

Does it let me remove elements?!

Does it tell me its size?!
!Then it is a collection.*"

*a collection does a few other things, but we will talk about these later"

1/21/2014	

10	

19

Another (equivalent but different) way of  
defining a collection [textbook]"

19"

"

A collection is an aggregate in which the
multiplicity is variable and in which the
aggregated parts are called elements."

20

Is an array a collection?

No, according to the textbook.

An array is not an aggregate since it is not a class
instance.  

An object is a class instance or an array

1/21/2014	

11	

21

Can a utility class encapsulate a
collection?

No, a utility class is not a class instance.

We could emulate a collection
•  static attributes would hold the elements

•  the required operations would be provided by static
methods
•  access the size of the collection (number of

elements)
•  addition and removal of elements
•  traversal of elements

22

Some examples
•  Suppose our elements are the colours of the rainbow

•  We will use the class java.awt.Color to encapsulate
each colour

Color red = new Color(255, 0, 0);
Color orange = new Color(255, 165, 0);
Color yellow = new Color(255, 255, 0);
Color green = new Color(0, 255, 0);
Color blue = new Color(0, 0, 255);
Color purple = new Color(128, 0, 128);

1/21/2014	

12	

23

Using an array…

•  Refer to code example L04Ex01

Color[] theRainbow = new Color[6];

•  can I add more elements to this array object?

24

Using an collection…

•  Refer to code example L04Ex02

ArrayList<Color> theRainbow1 = new ArrayList<Color>();

•  can I add more elements to an ArrayList
collection?

1/21/2014	

13	

25

Alias, Shallow Copy, Deep Copy
•  Let’s draw a memory diagram of an alias, and then do

the same for each of a shallow copy and deep copy

•  See code example L04Ex03_alias,
L04Ex04_shallow, L04Ex05_deep

