
1/16/2014	

1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1720
Week 01, Lecture 02

Winter 2014 ! Thursday, Jan 8, 2014

2

Objectives for this class meeting

1.  Conduct review of core concepts concerning contracts

and pre/post conditions

2.  Complete and discuss questions about Exceptions

1/16/2014	

2	

3

Recap about the Utility  
and Non-Utility Classes

utility classes: !

!  cannot be instantiated#

!  all methods and/or fields are static#

!  e.g., the class Toolbox

non-utility classes:!

!  can be instantiated#

! may include both non-static and static methods and/or fields#

!  e.g., the class Integer. Integer.MAX_INT is a static field and
Integer.parseInt is a static method. The class has no non-static
fields and toString() is a non-static method#

4

Recap about the Client View  

! implementers: offers services in the form of classes (utility
and non-utility classes)#

! clients: make use of the services offered by implementers,
subject to the Pre and Post conditions#

1/16/2014	

3	

5

Recap about the PRE and POST
Conditions 

! PRE – condition(s) that the client must satisfy#

! POST – condition(s) that the implementer must satisfy#

! PRE and POST conditions are used to establish correctness. #
! Do the services function according to their specification#
! This is done during development, before services are released

and go into production#

! PRE and POST conditions eliminate redundancy. #
!  Is the CLIENT or IMPLEMENTER responsible for checking the

value of the parameters being passed to methods? #
!  In the absence of information, both might do this.  

This could cause an app to be inefficient.#

6

PRE and POST: the Client View  

! the Pre and Post conditions are described in the API#

! the Pre and Post conditions are sometimes formulated in
terms of a boolean expression that must evaluate to true#

1/16/2014	

4	

7

PRE Example  

suppose we have the method  

#public String fraxas(int num)

#
! PRE written version :  

#num must be strictly greater than 0
! for the PRE to be met, the written description must hold  
#

! boolean expression version: 
#num > 0

! for the PRE to be met, num must be such that 
 num > 0 == true#

8

PRE Example  

suppose we have the method  

#public String saxa(int num)

#
! PRE written version :  

#num can be any int#
! for the PRE to be met, the written description must hold  
#

! boolean expression version: 
#true

! for the PRE to be met, num must be s.t.  
 true == true (or just true)

…but it will always be
trivially true, since the
compiler will do the
type checking!

…but any value of
num will satisfy this,
since the boolean
expression does not
even depend on num!

see sec 2.3.3 for further review!

1/16/2014	

5	

9

PRE and POST: the Client View  

! in Java, most often the PRE is true #
! this means the client needs simply to provide the parameter

values (and nothing further in terms of conditions on those
values)#

#

! in Java, it quite often happens that the POST consists of
both: #
1.  a specification of the return, and #
2.  a specification of the condition under which  

exceptions are thrown#

9

10

Example

10

no precondition is specified#
PRE is true

“returns” and “throws” are parts of the post
condition#

1/16/2014	

6	

11

Multiple Choice Quiz 

! complete the questions to the best of your abilities#

! you can discuss with your neighbours#

! we will discuss the answers, pending time #

11

12

Q1 - Example

int denom = 0;

int result = 7 / denom;

#

The compiler finds the two statements above to obey all syntax and
semantic rules, yet the resulting bytecode contains invalid instructions. #

12

1/16/2014	

7	

13

Q3

Exceptions may be thrown due to invalid instructions. #

Exceptions may be thrown due to bytecode instruction! #

!  For example: the method parseInt in Integer may through an
exception. The implementer of the class Integer accomplished this
by design (by using a statement that makes use of the reserved word
throw)#

#

13

14

Q4 - Example

!  Suppose the specification of App01 states that the app prompts the
user for two numbers and will output the product. The specification
also states the user does not enter two numbers, then the app prints
a friendly message and terminates.

! When we run App01, it never crashes. However, when the user
enters two numbers, it always outputs the sum of the two numbers.

!  The bytecode for App01 does not contain any invalid instructions,
and yet it is not correct.

1/16/2014	

8	

15

Q5

!  The running environment consists of the VM, the operating system,
the hardware, and the network, if any. (p.429)

16

Q7 – counter example

! Here is an app that throws an exception, yet never crashes:

1/16/2014	

9	

17

Q8

!  This question doesn’t make any sense!!!

!  The definition of a crash is that the VM terminates the program with
a non-clean exit.

!  A non-clean exit, by definition, is an exit without the VM conducting
an orderly shutdown

18

Q9

!  The VM certainly does have a shutdown routine!!

!  see the slides from L01

1/16/2014	

10	

19

Q10

!  the API for a service may stipulate that an exception may be thrown
under certain conditions.

!  The potential for an exception is part of the post-condition.

!  If an exception is thrown, it is not punishment. The method may be
merely following its contract.

!  if the client violates the pre-condition, the “punishment” is that the
implementer is no longer obligated to follow their post condition

!  this might even mean that an exception is NOT thrown, when the client

may be expecting this!

20

Q11

!  exceptions are not intrinsically bad – they are often a features of
services

!  if an app does not handle exceptions that may potentially arise, this
is usually a sign of a not-so-great implementation

1/16/2014	

11	

21

Q12

!  The API should specify the PRE and POST. It should not specify
consequences.

!  Knowing the consequences for pre- and post-condition violation is
part of the knowledge base that software developers should have. It
is not included in the API documentation.

22

Q13

!  if a service potentially throws an exception, this will be documented
in the post condition.

!  It doesn’t make any sense for it to be elsewhere in the API

!  It violates the principle of contracts if the API omits this piece of
information.

1/16/2014	

12	

23

Q14

!  The delegation model is built into the VM, it doesn’t change
depending on the app that the VM is asked to invoke.

24

Q15

!  If class A uses the services of class B, then A is the client of B!

!  The “is-a-client-of” relationship is transitive

!  E.g., A is a client of B, B is a client of C, C is a client of D

By transitivity, A is an indirect client of D

The “chain” of client relationships, during method invocations, defines
the invocation trail.

The trail starts with the main method and ends with the client that
does not delegate to any other method.

1/16/2014	

13	

25

Q16

! We start searching for a handler in the currently executing method

!  the search is transferred to the caller method

!  repeat up the trail until we reach the main method (all calls ultimately

originate in the main method)

!  the trail of the search can be seen in the stack trace!

26

Q17

!  searching “down” the invocation trail would mean starting in the
main method, and then going down the stack trace

!  This might be technically possible to do, but wouldn’t be a great idea

!  it would violate the principle of delegation

1/16/2014	

14	

27

Q18

! the designers of Java actually have the converse of this
policy, they don’t want software developers to explicitly
handle or delegate all exceptions

! we know this because some exceptions are checked and others

are unchecked (sec 11.3.3)

!  if a client makes use of a services that potentially throws a

checked exception, the compiler will enforce exception handling

!  this means that the client must explicitly handle the exception

!  either with a try-catch or a throws clause

!  if no explicit handling, compiler error!!

! but a big subset of the exceptions are unchecked!!

