Basic MATLAB continued; Using functions

Variable names

valid variable names	invalid variable names	reason invalid
x	\$	 does not begin with a letter \$ is not allowed in variable names
хб	бх	• does not begin with a letter
lastValue	if	• if is a keyword
pi_over_2	pi/2	• / is not allowed in variable names

D

Advice on choosing variable names

- use short, meaningful names
 - a name that conveys the purpose of the variable is often useful for others who need need to read your code, e.g., use

massEarth	instead of	mE
massSun	instead of	mS

- exceptions to the rule:
 - if you are solving a problem that contains variable names, you should try to use the same names, e.g., in physics the following would likely be common:

 $\tt g, \tt c, \tt v0, \tt h, \tt hBar$

Advice on choosing variable names

- use lowerCamelCase for most variable names, e.g., use
 - thetaRad instead of thetarad
- avoid long names, e.g., use
 - filteredData instead of
 measurementsFilteredToRemoveOutliers

Advice on choosing variable names

- be careful when using i and j as variable names
 - i and j are often used as loop variables (see Week o6)
 - in MATLAB i and j are actually names of functions that return the square root of -1

More on variable assignment

remember that the statement:

$$z = 1 + 2$$

means:

- 1. evaluate the expression on the right-hand side of =
- 2. store the result in the variable on the left-hand size of =

More on variable assignment

- what is the result of the following assignment statements?
 - z = 1 + 2; y = z; y = 4;
- ▶ is the value of **z** 3 or 4?

More on variable assignment

the statement:

y = z;

means:

- 1. evaluate the expression on the right-hand side of =
- 2. store the result in the variable on the left-hand size of =

Operator precedence

 all operators in MATLAB follow a set of precedence rules ("order of operations")

operator	name	precedence
()	parentheses	highest
*	exponentiation	
-	negation	
*, /, \	multiplication and division	
+, -	addition and subtraction	lowest

Logical expressions and operators

- the textbook introduces relational and logical expressions and operators in Chapter 1
 - these are expressions and operators involving the values
 true and false
- the relational operators are:

operator	name
>	greater than
>=	greater than or equal to
<	less than
<=	less than or equal to
==	equal to
~=	not equal to

Logical expressions and operators

the logical operators are:

operator	name
&&	and
11	or
~	not

 logical expressions and operators are not useful us until Week 05

Functions

- MATLAB is provided through functions
- a function in MATLAB accepts a set of inputs and (usually) calculates a set of outputs
 - there can be 0 or more inputs
 - there can be 0 or more outputs
- the user of the function provides the inputs
 - the input values are called *arguments* to the function
- the function provides the outputs
- the user uses the name of the function to use the function
 - we say that the user *calls* the function

Functions

you can find the names of elementary mathematical functions using the following command:

>>help elfun

- this produces a long list of functions...
 - try it in MATLAB if you missed this lecture; the list doesn't fit on a lecture slide
- you can also use Help browser:

>> doc elfun

Rounding functions

Rounding and remainder.

fix	- Round towards zero.
floor	- Round towards minus infinity.
ceil	- Round towards plus infinity.
round	- Round towards nearest integer.
mod	- Modulus (signed remainder after division).
rem	- Remainder after division.
sign	- Signum.

Rounding functions

round rounds the input value to the nearest integer and returns the rounded value

>> x = round(2.9)

call the function **round** with the argument **2.9**

 $\mathbf{x} =$

3

try other input values; use help round or
 doc round for information about the function

Rounding functions

- ceil, fix, and floor also round but in a different way
 - try them out to see the differences
 - use **help** or **doc** for more information

Trigonometric functions

- there are many trigonometric functions
- **cos**, **sin**, and **tan** compute the cosine, sine, and tangent of the input value *in radians*

$$>> y = cos(pi)$$

-1

call the function **cos** with the argument **pi**

y =

Trigonometric functions

cosd, **sind**, and **tand** compute the cosine, sine, and tangent of the input value *in degrees*

>> y = sind(90)

call the function **sind** with the argument **90**

y =

1

what is the value of tand(90) ?

Trigonometric functions

• calculate the magnitude of the torque about *O* when $\theta = 60^{\circ}$

Functions with multiple inputs

- a MATLAB function can have multiple inputs
- to call a function with multiple inputs, supply the arguments separated by commas
- consider the plot function which can be called with 1,
 or more arguments

>> help plot

Functions with multiple inputs

- >> x = -180:5:180;
- >> y = sind(x);
- >> plot(y);
- >> plot(x, y);
- >> plot(x, y, 'r.');
- >> plot(x, y, 'r.', x, cosd(x), 'b:');
- >> line(xlim, [0 0]);
- >> line([0 0], ylim);

try this in MATLAB to see what the different versions of **plot** do

Function with multiple outputs

- many MATLAB functions have multiple outputs
- to store the multiple outputs, assign the outputs to a vector of comma separated variable names
 - >> help sort

Functions with multiple outputs

- >> x = [2 5 4 1 3];
- >> y = sort(x);
- >> [y, idx] = sort(x)
- >> [y, idx] = sort(x, 2, 'descend')

try this in MATLAB to see what the different versions of **sort** do