Abstract classes and interfaces

· When we extended a class into a child class, we could override the parent’s methods to provide custom methods for the child
· BankAccount:
· deposit()
· withdraw()
· under polymorphism, if I treat a CheckingAccount object as a BankAccount, it still uses the overridden versions of those methods
· What if we require the implementer to extend our class and override certain methods, which we don’t want to provide a default implementation for?
· Call the parent an abstract class – any method that you want the child to override can be called an abstract method
· You can’t create an object of abstract class type

Abstract Declarations

· put “abstract” in the class declaration

public abstract class MyClass …


· abstract methods are declared with “abstract” and terminated with semicolon – no implementation
public abstract void myMethod();

· When you extend an abstract class, you must:
· Override ALL the abstract methods; ot
· Make the child itself abstract (in which case the child inherits the abstract method)

Suppose you have an abstract class with:
· no fields
· no constructors
· only abstract methods
[bookmark: _GoBack]These are called interfaces in Java.

Abstract classes and interfaces

- When we extended a class into a
child class, we could override the
parent’s methods to provide
custom methods for the child

oBankAccount:
= deposit()
= withdraw()
ounder polymorphism, if I
treat a CheckingAccount
object as a BankAccount, it
still uses the overridden
versions of those methods
- What if we require the
implementer to extend our class
and override certain methods,
which we don’t want to provide
a default implementation for?



