Inheritance

So far we have seen classes that do single tasks
· Bank Accounts – keep track of balances
· Stocks – keep track of stock prices

We have also seen classes that contain other classes
· Portfolio – lists of Bank Accounts and Stocks
· Aggregation – keep the reference, can change in the outside world
· Composition – object has the only reference in the universe, can’t change except via the object’s API

What happes if you have two classes that do almost the same thing?

e.g. 
- BankAccount – keeps track of a balance
- SavingsAccount – does everything BankAccount does, but every transaction has a fee associated

The way we have learned so far, we would have to write these two classes separately, even though they overlap a great deal

Through inheritance, we can have a “parent” class in common (BankAccount) to handle services that both classes need

Then, we could also have a child class (SavingsAccount) that does certain things slightly differently

We have already seen an example of inheritance from “Object”
· All objects in Java are children of Object
· All objects inherit all public features of Object: the methods toString(), hashCode() – this is why you can use these methods without declaring them
· On the other hand, you can declare your own versions and override those given by Object – provide exactly the same method signature as provided in the parent class (Object)
· You can cast any object to its parent type – any object can be cast to Object, however, you are restricted to use the parent API
· You can cast parent type to child type as long as the object was originally of child type








BankAccount b = new BankAccount();
// can cast up
Object o = (Object)b;
// can cast o down to BankAccount
// because it originally started as
// BankAccount
BankAccount c = (BankAccount)o;
// not ok: String s = (String)o;
// not ok: o.getBalance();
String s = “Hello World”;
Object x = (Object)s;
// not ok: BankAccount d = (BankAccount)x;

Class declaration for inheritance

public class B
extends A { … }

· A is the parent
· B is the child
· B inherits all public features of A
· You cannot inherit from more than one parent at the same time
· Public constructors are not inherited from the parent – public fields and methods are
· Private fields are not visible through inheritance – in fact NO private features are available (private constructors, private methods)
· [bookmark: _GoBack]The keyword super accesses parent resources … remember this() accesses the constructor of this object, super() accesses the constructor of the parent object

Inheritance

So far we have seen classes that do
single tasks
- Bank Accounts - keep track of
balances
- Stocks - keep track of stock
prices

We have also seen classes that
contain other classes
- Portfolio - lists of Bank Accounts
and Stocks
- Aggregation - keep the
reference, can change in the
outside world
- Composition - object has the
only reference in the universe,



