Review

Composition – object has the only reference to any mutable objects – only the object can change the objects it contains

Aggregation – object only keeps references to external objects – it is okay (and sometimes desirable) if they can be changed outside the object

Mutable vs. immutable in aggregation

· Primitives: 
· Immutable if
· There are no mutators
· There are no public nonfinal fields
· Objects:
· There are no mutators
· There are no public nonfinal fields of primitives or of immutable objects
· All references to mutable objects are defensively copied 
· There are no public (final or nonfinal) fields of mutable objects

Aggregation and Composition in Collections

· Generally, objects held in a class are not by themselves, they are in a “collection” e.g. ArrayList
· How do we deal with collections in an aggregation?

Can you use “clone”?
· If a collection implements “cloneable”, then it is legal to use the method “clone()”
· clone() makes a field-by-field copy of the object – this is called a “shallow copy” because it doesn’t respect the kind of relationship the fields have with their container (i.e. aggregate or collection)
· In some cases this causes problems, e.g. in the BankAccount case – we had to copy each BankAccount before storing them in the copied collection
· What we did in the BankAccount example is called a “deep copy” – the copy of each object respects the relationship between the object and container
· [bookmark: _GoBack]As a result, we will not use clone() in this course 

Review

Composition - object has the only
reference to any mutable objects -
only the object can change the
objects it contains

Aggregation - object only keeps
references to external objects - it is
okay (and sometimes desirable) if
they can be changed outside the
object

Mutable vs. immutable in
aggregation

- Primitives:
olmmutable if
= There are no mutators



