Aggregation and Composition

· Aggregation is an object that contains other objects
· Portfolio – contain BankAccount and Stock
· A composition is a special kind of aggregation where the container class “owns” the object
· Container class has the only reference in the universe to all mutable objects it owns
· If this doesn’t happen, the outside world can change the object
· Strategy: Make copies of objects in a composition when they are passed into or out of the class
Mutable vs. immutable

· Simple classes (not aggregates):
· No public non-final fields
· No public mutators (i.e. no methods that make changes)
· If the above is satisfied the class is immutable, otherwise it is mutable

· Aggregations:
· No public non-final fields of primitive or immutable object type
· No public fields at all of mutable type
· No public mutators
· All mutable object fields are defensively copied (separate issue from composition)

· Note: using the keyword “final” with a mutable class does NOT make the contents of that class immutable
· The value held by e.g. sm in our code example is the REFERENCE to an object – if you make that final, all you mean is that you can’t change the REFERENCE – it is perfectly fine to change the contents at that reference

· Immutable objects and primitives can be handled similarly from a object copying perspective
· Primitives are stored by value
· Immutables are stored by reference, but the value at the reference is unchangeable – therefore the reference can substitute for the value

Aggregations using collections

· Collections framework features classes and tools for handling large numbers of objects
· E.g. ArrayList, HashMap, TreeMap, …
· Collections (e.g. ArrayList) are themselves objects
· [bookmark: _GoBack]But also, they contain objects (they are themselves aggregates)
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