Aggregation and Composition

· Aggregation is an object that contains other objects
· Portfolio – contain BankAccount and Stock
· A composition is a special kind of aggregation where the container class “owns” the object
· Container class has the only reference in the universe to all mutable objects it owns
· If this doesn’t happen, the outside world can change the object
· Strategy: Make copies of objects in a composition when they are passed into or out of the class
Mutable vs. immutable

· Simple classes (not aggregates):
· No public non-final fields
· No public mutators (i.e. no methods that make changes)
· If the above is satisfied the class is immutable, otherwise it is mutable

· Aggregations:
· No public non-final fields of primitive or immutable object type
· No public fields at all of mutable type
· No public mutators
· All mutable object fields are defensively copied (separate issue from composition)

· Note: using the keyword “final” with a mutable class does NOT make the contents of that class immutable
· The value held by e.g. sm in our code example is the REFERENCE to an object – if you make that final, all you mean is that you can’t change the REFERENCE – it is perfectly fine to change the contents at that reference

· Immutable objects and primitives can be handled similarly from a object copying perspective
· Primitives are stored by value
· Immutables are stored by reference, but the value at the reference is unchangeable – therefore the reference can substitute for the value

Aggregations using collections

· Collections framework features classes and tools for handling large numbers of objects
· E.g. ArrayList, HashMap, TreeMap, …
· Collections (e.g. ArrayList) are themselves objects
· [bookmark: _GoBack]But also, they contain objects (they are themselves aggregates)

Aggregation and Composition

- Aggregation is an object that
contains other objects
oPortfolio - contain
BankAccount and Stock
- A composition is a special kind
of aggregation where the
container class “owns” the object
oContainer class has the only
reference in the universe to
all mutable objects it owns
olf this doesn’t happen, the
outside world can change the
object
oStrategy: Make copies of
objects in a composition
when they are passed into or
out of the class



