Test 1 – during your lab period on the week of Feb 10
About ½ labtest, about ½ written
Test material up to and including Wednesday February 5

Last time we looked at special methods inherited from Object
· equals()
· toString()
· hashCode()
· clone()
· getClass()

Implementing an interface – you can declare that your class implements an “interface” – all this means is that your class contains certain defined methods
Comparable<T> interface
· Comparable<BankAccount>
If class BankAccount implements the Comparable<BankAccount> interface, then it must include whatever methods the interface requires

Comparable<T> requires you to include the method 

public int compareTo(T x)

in this case T = BankAccount

public int compareTo(BankAccount b)

Comparable API says: compareTo returns an integer, which is:
-1 if this > b
+1 if this < b
0 if this == b (consistent with equals())

a.compareTo(b): this == a

You have to declare that your class implements the interface

public class BankAccount
implements Comparable<BankAccount>
{ … }

Coming back to mixed static-nonstatic features …

Singleton class – a singleton class is a class that only allows one object of its type to be created

In a singleton, the constructor must be private – this is to prevent the client from creating as many objects of this type as s/he wants

[bookmark: _GoBack]Instead there is a static method, usually called getInstance, that returns the one and only instance of the singleton – getInstance has to be static because you need to run the method even if no objects of singleton type have been created yet

Test 1 - during your lab period on
the week of Feb 10

About % labtest, about % written
Test material up to and including
Wednesday February 5

Last time we looked at special
methods inherited from Object
- equals()
- toString()
- hashCode()
- clone()
- getClass()

Implementing an interface - you
can declare that your class
implements an “interface” - all this
means is that your class contains
certain defined methods



