Inherited methods of classes

· toString()
· equals()
· hashCode()
· getClass()
· a bunch of others which are not used at this stage
· All of these methods are inherited from the default type Object – you can use any of them in your class, or you can override them with your own implementation

getClass()

· tells you what class the object belongs to
· better than instanceof because instanceof gets confused under inheritance
· instanceof tells you whether you can cast
· it doesn’t tell you what class the object belongs to

in an equals() method, first check:
· argument object o is null
· o.getClass() != this.getClass()
If either is true, then equals() should return false

hashCode()

· A hash is a special number that lets you check whether two objects are unique
Default declaration:
public int hashCode()

· Useful in declaring hash sets
· Hashes are also useful in quickly figuring out if two data strings are equal
· Are hashes ALWAYS unique?
· There is the possibility that two hashes will “collide”
· BankAccount:
· int accountNumber
· double balance
· Number of possible combinations:
· 2^32 ints
· 2^64 doubles
· 2^96 possibilities
· but hashCode returns int
· 2^32 ints
· collisions are okay, but you should work to make sure typical data values have unique hashes

Default hashcode: returns a unique identifier for each object which is set when the object is created – has nothing to do with the internal data

· Definitely, hashcodes should be equal if equals() returns true
· Most of the time, hashchodes should be unequal if equals() returns false (can’t always be true because of collisions) – should be true for typically occurring data
Here’s a decent way to generate a hashcode:
· create a string with all the unique data that you need (perhaps this can be obtained from toString()) – call this string s
· [bookmark: _GoBack]return s.hashCode() – calls the string version of hashCode which generates a sophisticated has

Inherited methods of classes

- toString()

- equals()

- hashCode()

- getClass()

- abunch of others which are not
used at this stage

- All of these methods are
inherited from the default type
Object - you can use any of them
in your class, or you can override
them with your own
implementation

getClass()

- tells you what class the object
belongs to

