
More Data Structures (Part 2)

Queues

1

Queue

2

Queue

3

back front

Queue Operations

4

 classically, queues only support two operations

1. enqueue

 add to the back of the queue

2. dequeue

 remove from the front of the queue

Queue Optional Operations
 optional operations

1. size

 number of elements in the queue

2. isEmpty

 is the queue empty?

3. peek

 get the front element (without removing it)

4. search

 find the position of the element in the queue

5. isFull

 is the queue full? (for queues with finite capacity)

6. capacity

 total number of elements the queue can hold (for queues with
finite capacity)

5

Enqueue
1. q.enqueue("A")

2. q.enqueue("B")

3. q.enqueue("C")

4. q.enqueue("D")

5. q.enqueue("E")

6

A B C D E

B F B B B

B

B

Dequeue
1. String s = q.dequeue()

7

A B C D E

F B

Dequeue
1. String s = q.dequeue()

2. s = q.dequeue()

8

B C D E

F B

Dequeue
1. String s = q.dequeue()

2. s = q.dequeue()

3. s = q.dequeue()

9

C D E

F B

Dequeue
1. String s = q.dequeue()

2. s = q.dequeue()

3. s = q.dequeue()

4. s = q.dequeue()

10

D E

F B

Dequeue
1. String s = q.dequeue()

2. s = q.dequeue()

3. s = q.dequeue()

4. s = q.dequeue()

5. s = q.dequeue()

11

E

F B

FIFO
 queue is a First-In-First-Out (FIFO) data structure

 the first element enqueued in the queue is the first element
that can be accessed from the queue

12

Implementation with LinkedList
 a linked list can be used to efficiently implement a

queue as long as the linked list keeps a reference to the
last node in the list

 required for enqueue

 the head of the list becomes the front of the queue

 removing (dequeue) from the head of a linked list requires
O(1) time

 adding (enqueue) to the end of a linked list requires O(1)
time if a reference to the last node is available

 java.util.LinkedList is a doubly linked list that holds a
reference to the last node

13

14

public class Queue<E> {

 private LinkedList<E> q;

 public Queue() {

 this.q = new LinkedList<E>();

 }

 public enqueue(E element) {

 this.q.addLast(element);

 }

 public E dequeue() {

 return this.q.removeFirst();

 }

}

Implementation with LinkedList
 note that there is no need to implement your own

queue as there is an existing interface

 the interface does not use the names enqueue and dequeue
however

15

java.util.Queue
public interface Queue<E>

extends Collection<E>

 plus other methods

 http://docs.oracle.com/javase/7/docs/api/java/util/Queue.
html

16

boolean add(E e)

Inserts the specified element into this queue...

E remove()

Retrieves and removes the head of this queue...

E peek()

Retrieves, but does not remove, the head of this queue...

http://docs.oracle.com/javase/7/docs/api/java/util/Queue.html
http://docs.oracle.com/javase/7/docs/api/java/util/Queue.html

java.util.Queue
 LinkedList implements Queue so if you ever need a

queue you can simply use:

 e.g. for a queue of strings

Queue<String> q = new LinkedList<String>();

17

Queue applications
 queues are useful whenever you need to hold elements

in their order of arrival

 serving requests of a single resource

 printer queue

 disk queue

 CPU queue

 web server

18

Robotics example
 in robotics, the path planning problem is

 given a map of the environment, find a path between the
starting point of the robot and a goal location that does not
pass through any obstacles

 one approach is to use a grid for the map

 the robot can move from a square on to any adjacent square;
i.e., up, down, left, right

 in the following figures:

 white square = free space; i.e., the robot can move on to the square

 red square = obstacle; i.e., the robot cannot move on to the square

19

Grid-based map

20

start

goal

Wave-front planner
 the wave-front planner finds a path between a start

and goal point in spaces represented as a grid where
 free space is labeled with a 0

 obstacles are labeled with a 1

 the goal is labeled with a 2

 the start is known

21

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0

0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0

0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0

0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 start

Wave-front planner
 starting with the goal cell

label L = 2

while start cell is unlabelled {

 for each cell C with label L {

 for each cell Z connected to C with label 0 {

 label Z with L+1

 }

 }

 L = L + 1

}

22

Wave-front planner

23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0

0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0

0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0

0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 start

Wave-front planner

24

0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3

0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0

0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0

0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0

0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 start

Wave-front planner

3/30/2014 25

 0 0 0 0 0 0 0 0 0 0 0 0 5 4 3 2

0 0 0 0 0 0 0 0 0 0 0 0 0 5 4 3

0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0

0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0

0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0

0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 goal

Wave-front planner

3/30/2014 26

 0 0 0 14 13 12 11 10 9 8 7 6 5 4 3 2

0 0 0 0 14 13 12 11 10 9 8 7 6 5 4 3

0 0 1 1 0 14 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0

0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0

0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0

0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 start

Wave-front planner

3/30/2014 27

 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3

19 18 1 1 15 14 1 1 1 1 1 1 1 1 1 1

20 19 1 1 16 15 1 1 1 1 1 1 1 1 1 1

0 20 1 1 17 16 17 18 19 20 0 0 1 1 0 0

1 1 1 1 18 17 18 19 20 0 0 0 1 1 0 0

1 1 1 1 19 18 19 20 0 0 0 0 1 1 0 0

0 0 1 1 20 19 20 0 0 0 0 0 1 1 0 0

0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0

0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 start

Wave-front planner

3/30/2014 28

 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3

19 18 1 1 15 14 1 1 1 1 1 1 1 1 1 1

20 19 1 1 16 15 1 1 1 1 1 1 1 1 1 1

21 20 1 1 17 16 17 18 19 20 21 22 1 1 37 38

1 1 1 1 18 17 18 19 20 21 22 23 1 1 36 37

1 1 1 1 19 18 19 20 21 22 23 24 1 1 35 36

0 0 1 1 20 19 20 21 22 23 24 25 1 1 34 35

0 0 1 1 1 1 1 1 23 24 1 1 1 1 33 34

0 0 1 1 1 1 1 1 24 25 1 1 1 1 32 33

0 0 1 1 29 28 27 26 25 26 27 28 29 30 31 32

0 0 1 1 30 29 28 27 26 27 28 29 30 31 32 33

0 0 1 1 1 1 1 1 1 1 1 1 1 1 33 34

0 49 1 1 1 1 1 1 1 1 1 1 1 1 34 35

49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 36

* 49 48 47 46 45 44 43 42 41 40 39 38 37 36 37 start

Wave-front planner

3/30/2014 29

 to generate a path starting from the start point

L = start point label

while not at the goal {

 move to any connected cell with label L-1

 L = L-1

}

Wave-front planner

3/30/2014 30

 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3

19 18 1 1 15 14 1 1 1 1 1 1 1 1 1 1

20 19 1 1 16 15 1 1 1 1 1 1 1 1 1 1

21 20 1 1 17 16 17 18 19 20 21 22 1 1 37 38

1 1 1 1 18 17 18 19 20 21 22 23 1 1 36 37

1 1 1 1 19 18 19 20 21 22 23 24 1 1 35 36

0 0 1 1 20 19 20 21 22 23 24 25 1 1 34 35

0 0 1 1 1 1 1 1 23 24 1 1 1 1 33 34

0 0 1 1 1 1 1 1 24 25 1 1 1 1 32 33

0 0 1 1 29 28 27 26 25 26 27 28 29 30 31 32

0 0 1 1 30 29 28 27 26 27 28 29 30 31 32 33

0 50 1 1 1 1 1 1 1 1 1 1 1 1 33 34

50 49 1 1 1 1 1 1 1 1 1 1 1 1 34 35

49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 36

50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 37 start

Breadth-first search
 the wave-front planner is actually a classic computer

science algorithm called breadth-first search

 for grid-based maps, the grid can be viewed as a graph

 you learn about graphs in CSE2011

 the trees we have been studying are a kind of graph called a
directed acyclic graph

 breadth-first search can also be used to traverse a tree

 visiting every node of a tree using breadth-first search
results in visiting nodes in order of their level in the tree

31

50

27 73

8 44 83

73 93

BFS: 50

50

27 73

8 44 83

73 93

BFS: 50, 27, 73

50

27 73

8 44 83

73 93

BFS: 50, 27, 73, 8, 44, 83

50

27 73

8 44 83

73 93

BFS: 50, 27, 73, 8, 44, 83, 73, 93

Breadth-first search algorithm

Q.enqueue(root node)

while Q is not empty {

 n = Q.dequeue()

 if n.left != null {

 Q.enqueue(n.left)

 }

 if n.right != null {

 Q.enqueue(n.right)

 }

}

36

50

27 73

8 44 83

73 93

BFS:

50

50

27 73

8 44 83

73 93

BFS: 50

27 73
dequeue 50,
enqueue left and right

50

27 73

8 44 83

73 93

BFS: 50, 27

73 8
dequeue 27,
enqueue left and right

44

50

27 73

8 44 83

73 93

BFS: 50, 27, 73

8 44
dequeue 73,
enqueue right

83

50

27 73

8 44 83

73 93

BFS: 50, 27, 73, 8

44 83
dequeue 8

50

27 73

8 44 83

73 93

BFS: 50, 27, 73, 8, 44

83
dequeue 44

50

27 73

8 44 83

73 93

BFS: 50, 27, 73, 8, 44, 83

73
dequeue 83,
enqueue left and right

93

50

27 73

8 44 83

73 93

BFS: 50, 27, 73, 8, 44, 83, 73

93
dequeue 73

50

27 73

8 44 83

73 93

BFS: 50, 27, 73, 8, 44, 83, 73, 93
dequeue 93

50

27 73

8 44 83

73 93

BFS: 50, 27, 73, 8, 44, 83, 73, 93
queue empty

Previous written exam question
Suppose that you have a Stack class that has only the
following features:

 the elements are of type int

 a default constructor that creates an empty stack

 a method isEmpty that returns true if the stack is empty

 push and pop methods

Describe how you would write a (static) method that makes a
copy of a stack. A postcondition of your method must be that
the state of the stack when the method finishes is the same as
when the method started. Try to avoid using additional data
structures (such as lists and arrays) if possible. Functional
Java code is not required.

47

Previous written exam question
Suppose that you have a Queue class that has only the
following features:

 the elements are of type int

 a default constructor that creates an empty queue

 a method size that returns the number of elements in the
queue

 enqueue and dequeue methods

Describe how you would write a (static) method that makes a
copy of a queue. A postcondition of your method must be
that the state of the queue when the method finishes is the
same as when the method started. Try to avoid using
additional data structures (such as lists and arrays) if
possible. Functional Java code is not required.

48

