Recursion (Part 2)

Solving Recurrence Relations

Divide and Conquer

- bisection works by recursively finding which half of the range 'plus' - 'minus' the root lies in
- each recursive call solves the same problem (tries to find the root of the function by guessing at the midpoint of the range)
- each recursive call solves one smaller problem because half of the range is discarded
- bisection method is decrease and conquer
- divide and conquer algorithms typically recursively divide a problem into several smaller sub-problems until the sub-problems are small enough that they can be solved directly

Merge Sort

- merge sort is a divide and conquer algorithm that sorts a list of numbers by recursively splitting the list into two halves

- the split lists are then merged into sorted sub-lists

Merging Sorted Sub-lists

- two sub-lists of length 1

left	right
4	3

| result |
| ---: | ---: | ---: |
| 3 4 |

1 comparison
2 copies

```
LinkedList<Integer> result = new LinkedList<Integer>();
```

```
int fL = left.getFirst();
int fR = right.getFirst();
if (fL < fR) {
    result.add(fL);
    left.removeFirst();
}
else {
    result.add(fR);
    right.removeFirst();
}
if (left.isEmpty()) {
    result.addAll(right);
}
else {
    result.addAll(left);
}
```


Merging Sorted Sub-lists

- two sub-lists of length 2

3 comparisons
4 copies

```
LinkedList<Integer> result = new LinkedList<Integer>();
while (left.size() > 0 && right.size() > 0 ) {
    int fL = left.getFirst();
    int fR = right.getFirst();
    if (fL < fR) {
        result.add(fL);
        left.removeFirst();
    }
    else {
        result.add(fR);
        right.removeFirst();
    }
}
if (left.isEmpty()) {
    result.addAll(right);
}
else {
    result.addAll(left);
}
```


Merging Sorted Sub-lists

- two sub-lists of length 4

5 comparisons
8 copies

Simplified Complexity Analysis

- in the worst case merging a total of \mathbf{n} elements requires
n - 1 comparisons +
n copies
$=\mathbf{2 n} \mathbf{- 1}$ total operations
- we say that the worst-case complexity of merging is the order of $O(n)$
- $O(\ldots)$ is called Big O notation
- notice that we don't care about the constants 2 and 1
- formally, a function $f(n)$ is an element of $O(n)$ if and only if there is a positive real number M and a real number m such that

$$
|f(n)|<M n \text { for all } n>m
$$

- is $2 n-1$ an element of $O(n)$?
- yes, let $M=\mathbf{2}$ and $m=0$, then $\mathbf{2 n - 1}<\mathbf{2 n}$ for all $n>0$

Informal Analysis of Merge Sort

- suppose the running time (the number of operations) of merge sort is a function of the number of elements to sort
- let the function be $T(n)$
- merge sort works by splitting the list into two sub-lists (each about half the size of the original list) and sorting the sub-lists
- this takes $2 T(n / 2)$ running time
- then the sub-lists are merged
- this takes $O(n)$ running time
- total running time $T(n)=2 T(n / 2)+O(n)$

Solving the Recurrence Relation

$$
\begin{array}{rlr}
T(n) & \rightarrow 2 T(n / 2)+O(n) \quad T(n) \text { approaches } \ldots \\
& \approx 2 T(n / 2)+n \\
& =2[2 T(n / 4)+n / 2]+n \\
& =4 T(n / 4)+2 n \\
& =4[2 T(n / 8)+n / 4]+2 n \\
& =8 T(n / 8)+3 n \\
& =8[2 T(n / 16)+n / 8]+3 n \\
& =16 T(n / 16)+4 n \\
& =2^{k} T\left(n / 2^{k}\right)+k n
\end{array}
$$

Solving the Recurrence Relation

$T(n)=\mathbf{2}^{k} T\left(n / \mathbf{2}^{k}\right)+k n$

- for a list of length $\mathbf{1}$ we know $T(\mathbf{1})=\mathbf{1}$
- if we can substitute $T(1)$ into the right-hand side of $T(n)$ we might be able to solve the recurrence

$$
n / \mathbf{2}^{k}=\mathbf{1} \Rightarrow \mathbf{2}^{k}=n \Rightarrow k=\log (n)
$$

Solving the Recurrence Relation

$$
\begin{aligned}
T(n) & =\quad 2^{\log (n)} T\left(n / 2^{\log (n)}\right)+n \log (n) \\
& =n T(\mathbf{1})+n \log (n) \\
& =n+n \log (n) \\
& \in \quad n \log (n)
\end{aligned}
$$

Is Merge Sort Efficient?

- consider a simpler (non-recursive) sorting algorithm called insertion sort

```
// to sort an array a[0]..a[n-1]
not Java!
for i = 0 to (n-1) {
    k = index of smallest element in sub-array a[i]..a[n-1]
    swap a[i] and a[k]
}
```

```
for i = 0 to (n-1) {
    for j = (i+1) to (n-1) {
        if (a[j] < a[i]) {
            k = j;
        }
    }
    tmp = a[i]; a[i] = a[k]; a[k] = tmp; 3assignments
}
```

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{n-1}\left(\left(\sum_{j=(i+1)}^{n-1} 2\right)+3\right) \\
& =\sum_{i=0}^{n-1}(2(n-i-1))+3 n \\
& =2 \sum_{i=0}^{n-1} n-2 \sum_{i=0}^{n-1} i-2 \sum_{i=0}^{n-1} 1+3 n \\
& =2 n^{2}-2 \frac{2(n-1)}{2}-2 n+3 n \\
& =2 n^{2}-n^{2}+n-2 n+3 n \\
=n^{2} & +2 n \in O\left(n^{2}\right)
\end{aligned}
$$

Comparing Rates of Growth

Comments

- big O complexity tells you something about the running time of an algorithm as the size of the input, n, approaches infinity
- we say that it describes the limiting, or asymptotic, running time of an algorithm
- for small values of n it is often the case that a less efficient algorithm (in terms of big O) will run faster than a more efficient one
- insertion sort is typically faster than merge sort for short lists of numbers

Revisiting the Fibonacci Numbers

- the recursive implementation based on the definition of the Fibonacci numbers is inefficient

```
public static int fibonacci(int n) {
    if (n == 0) {
        return 0;
    }
    else if (n == 1) {
        return 1;
    }
    int f = fibonacci(n - 1) + fibonacci(n - 2);
    return f;
}
```

- how inefficient is it?
- let $T(n)$ be the running time to compute the nth Fibonacci number
- $T(0)=T(1)=1$
- $T(n)$ is a recurrence relation

$$
\begin{aligned}
T(n) & \rightarrow T(n-1)+T(n-2) \\
& =(T(n-2)+T(n-3))+T(n-2) \\
& =2 T(n-2)+T(n-3) \\
& >2 T(n-2) \\
& >2(2 T(n-4))=4 T(n-4) \\
& >4(2 T(n-6))=8 T(n-6) \\
& >8(2 T(n-8))=16 T(n-8) \\
& >2^{k} T(n-2 k)
\end{aligned}
$$

Solving the Recurrence Relation

$$
T(n)>\quad 2^{k} T(\underline{n-2 k})
$$

- we know $T(1)=1$
- if we can substitute $T(1)$ into the right-hand side of $T(n)$ we might be able to solve the recurrence

$$
\underline{n-2 k}=1 \Rightarrow 1+2 k=n \Rightarrow k=(\mathrm{n}-1) / 2
$$

$$
T(n)>2^{k} T(n-2 k)=2^{(n-1) / 2} T(1)=2^{(n-1) / 2} \in O\left(2^{n}\right)
$$

An Efficient Fibonacci Algorithm

- an $O(n)$ algorithm exists that computes all of the Fibonacci numbers from $f(0)$ to $f(n)$

- create an array of length $(n+1)$ and sequentially fill in the array values
- $O(n)$

```
// pre. n >= 0
public static int[] fibonacci(int n) {
    int[] f = new int[n + 1];
    f[0] = 0;
    f[1] = 1;
    for (int i = 2; i < n + 1; i++) {
        f[i] = f[i - 1] + f[i - 2];
    }
    return f;
}
```


Closing Question

- the recursive Fibonacci and merge sort algorithms can be illustrated using a call tree
- merge sort is actually 2 trees; one to split and one to merge
- why is the Fibonacci algorithm $O\left(2^{n}\right)$ and merge sort $O(n \log n)$?

