
Graphical User Interfaces (Part 2)

1

View
 view
 presents the user with a sensory (visual, audio, haptic)

representation of the model state
 a user interface element (the user interface for simple

applications)

2

Simple Applications
 simple applications often consist of just a single

window (containing some controls)
JFrame

window with border, title, buttons

3

View as a Subclass of JFrame
 a View can be

implemented as a subclass
of a JFrame
 hundreds of inherited

methods but only a dozen
or so are commonly called
by the implementer (see
URL below)

4

View

JFrame

Frame

Window

Container

Component

Object

user interface item

holds other components

plain window

window with title and
border

http://java.sun.com/docs/books/tutorial/uiswing/components/frame.html

Implementing a View
 the View is responsible for creating:
 the Controller
 all of the user interface (UI) components

 buttons JButton
 labels JLabel
 text fields JTextField

 the View is also responsible for setting up the
communication of UI events to the Controller

 each UI component needs to know what object it should
send its events to

5

Labels and Text Fields
 a label displays unselectable text and images
 a text field is a single line of editable text
 the ability to edit the text can be turned on and off

6 http://docs.oracle.com/javase/tutorial/uiswing/components/textfield.html

label
JLabel

label
JLabel

text field (edit off)
JTextField

text field (edit on)
JTextField

http://docs.oracle.com/javase/tutorial/uiswing/components/label.html

Labels
 to create a label

JLabel label = new JLabel("text for the label");

 to create a text field (20 characters wide)

JTextField textField = new JTextField(20);

7

Adding the Labels and Text Fields
 see CalcView constructor
 try making the text field editable and non-editable

8

Buttons
 a button responds to the user pointing and clicking the

mouse on it (or the user pressing the Enter key when
the button has the focus)

9 http://docs.oracle.com/javase/tutorial/uiswing/components/button.html

button
JButton

Buttons
 to create a button

JButton button = new JButton("text for the button");

10

Adding the Buttons
 see CalcView constructor
 try enabling and disabling the buttons

11

Event Driven Programming
 so far we have a View with some UI elements (buttons,

text fields)
 now we need to implement the actions

 each UI element is a source of events
 button pressed, slider moved, text changed (text field), etc.

 when the user interacts with a UI element an event is
triggered
 this causes an event object to be sent to every object

listening for that particular event
 the event object carries information about the event

 the event listeners respond to the event

12

Not a UML Diagram

13

event
source 1

event
source 2

event
 listener A

event
 listener B

event
 listener C

event
 listener D

event object 1

event object 2

Not a UML Diagram

14

Controller

event object "sum" "sum"

"subtract"

"multiply"

"divide"

"clear"
event object "clear"

AbstractButton ActionEvent
implements

ActionListener

Implementation
 each Jbutton has two inherited methods from
AbstractButton

 public void addActionListener(ActionListener l)

 public void setActionCommand(String actionCommand)

 for each JButton

1. call addActionListener with the controller as the
argument

2. call setActionCommand with a string describing what event
has occurred

15

CalcView: Add Actions
 see CalcView setCommand method

16

Controller
 controller
 processes and responds to events (such as user actions)

from the view and translates them to model method calls
 needs to interact with both the view and the model

but does not own the view or model
 aggregation

17

View

JFrame

Controller Model
1 1

View is a
subclass

of JFrame

Controller has
1 View

Controller has
1 Model

Controller Fields
 see CalcController

18

CalcController
 recall that our application only uses events that are

fired by buttons (Jbuttons)
 a button fires an ActionEvent event whenever it is

clicked
 CalcController listens for fired ActionEvents
 how? by implementing the ActionListener interface

public interface ActionListener

{
 void actionPerformed(ActionEvent e);
}

19

 CalcController was registered to listen for
ActionEvents fired by the various buttons in
CalcView (see method setCommand in CalcView)

 whenever a button fires an event, it passes an
ActionEvent object to CalcController via the
actionPerformed method
 actionPerformed is responsible for dealing with the

different actions (open, save, sum, etc)

20

Sum, Subtract, Multiply, Divide

21

C
a
l
c
V
i
e
w

C
a
l
c
C
o
n
t
r
o
l
l
e
r
 actionPerformed

getUserValue

C
a
l
c
M
o
d
e
l
 sum

2

1

3

setCalcValue 5

getCalcValue 4

CalcController: Other Actions
 see CalcController actionPerformed method

22

actionPerformed
 even with only 5 buttons our actionPerformed

method is unwieldy
 imagine what would happen if you tried to implement a

Controller this way for a big application

 rather than one big actionPerformed method we can
register a different ActionListener for each button
 each ActionListener will be an object that has its own

version of the actionPerformed method

23

Calculator Listeners

24

DivideListener

SubtractListener

SumListener

ArithmeticListener

Calculator Listener
 whenever a listener receives an event corresponding to

an arithmetic operation it does:
1. asks CalcView for the user value and converts it to an int
 getUserValue method

2. asks CalcModel to perform the arithmetic operation
 doOperation method

3. updates the calculated value in CalcView

25

ArithmeticListener

private abstract class ArithmeticListener implements
ActionListener {

 @Override

 public void actionPerformed(ActionEvent action) {

 int userValue = this.getUserValue();

 this.doOperation(userValue);

 this.setCalculatedValue();

}

26

1.
2.
3.

ArithmeticListener

 /**

 * Subclasses will override this method to add, subtract,

 * divide, multiply, etc., the userValue with the current

 * calculated value.

 */

 protected abstract void doOperation(int userValue);

27

ArithmeticListener

 private int getUserValue() {

 int userValue = 0;

 try {

 userValue = Integer.parseInt(getView().getUserValue());

 }

 catch(NumberFormatException ex)

 {}

 return userValue;

 }

 private void setCalculatedValue() {

 getView().setCalcValue("" + getModel().getCalcValue());

 }

 28

Note: these methods need
access to the view and model
which are associated with the
controller.

Inner Classes

 how do we give the listeners access to the view and
model?
 could use aggregation
 alternatively, we can make the listeners be inner classes of

the controller

29

Inner Classes
 an inner class is a (non-static) class that is defined

inside of another class

 public class Outer

 {

 // Outer's attributes and methods

 private class Inner

 { // Inner's attributes and methods

 }

 }

30

Inner Classes
 an inner class has access to the attributes and methods

of its enclosing class, even the private ones

 public class Outer

 {

 private int outerInt;

 private class Inner

 {

 public setOuterInt(int num) { outerInt = num; }

 }

 }

31

note not this.outerInt

use Outer.this.outerInt

ArithmeticListener
public class CalcController2 {

 // ...

 // inner class of CalcController2

 private abstract class ArithmeticListener implements

 ActionListener {

 // ...

 }

 // inner class of CalcController2

 private class SumListener extends ArithmeticListener {

 @Override

 protected void doOperation(int userValue) {

 // ...

 }

 }

}

 32

SumListener

private class SumListener extends ArithmeticListener {

 @Override

 protected void doOperation(int userValue) {

 getModel().sum(userValue);

 }

}

33

Why Use Inner Classes
 only the controller needs to create instances of the

various listeners
 i.e., the listeners are not useful outside of the controller
 making the listeners private inner classes ensures that only
CalcController can instantiate the listeners

 the listeners need access to private methods inside of
CalcController (namely getView and
getModel)
 inner classes can access private methods

34

Calculator using multiple listeners
 requires changes to the view to support the adding of

listeners
 see CalcView2

35

	Graphical User Interfaces (Part 2)
	View
	Simple Applications
	View as a Subclass of JFrame
	Implementing a View
	Labels and Text Fields
	Labels
	Adding the Labels and Text Fields
	Buttons
	Buttons
	Adding the Buttons
	Event Driven Programming
	Not a UML Diagram
	Not a UML Diagram
	Implementation
	CalcView: Add Actions
	Controller
	Controller Fields
	CalcController
	Slide Number 20
	Sum, Subtract, Multiply, Divide
	CalcController: Other Actions
	actionPerformed
	Calculator Listeners
	Calculator Listener
	ArithmeticListener
	ArithmeticListener
	ArithmeticListener
	Inner Classes
	Inner Classes
	Inner Classes
	ArithmeticListener
	SumListener
	Why Use Inner Classes
	Calculator using multiple listeners

