
Graphical User Interfaces (Part 2)

1

View
 view
 presents the user with a sensory (visual, audio, haptic)

representation of the model state
 a user interface element (the user interface for simple

applications)

2

Simple Applications
 simple applications often consist of just a single

window (containing some controls)
JFrame

window with border, title, buttons

3

View as a Subclass of JFrame
 a View can be

implemented as a subclass
of a JFrame
 hundreds of inherited

methods but only a dozen
or so are commonly called
by the implementer (see
URL below)

4

View

JFrame

Frame

Window

Container

Component

Object

user interface item

holds other components

plain window

window with title and
border

http://java.sun.com/docs/books/tutorial/uiswing/components/frame.html

Implementing a View
 the View is responsible for creating:
 the Controller
 all of the user interface (UI) components

 buttons JButton
 labels JLabel
 text fields JTextField

 the View is also responsible for setting up the
communication of UI events to the Controller

 each UI component needs to know what object it should
send its events to

5

Labels and Text Fields
 a label displays unselectable text and images
 a text field is a single line of editable text
 the ability to edit the text can be turned on and off

6 http://docs.oracle.com/javase/tutorial/uiswing/components/textfield.html

label
JLabel

label
JLabel

text field (edit off)
JTextField

text field (edit on)
JTextField

http://docs.oracle.com/javase/tutorial/uiswing/components/label.html

Labels
 to create a label

JLabel label = new JLabel("text for the label");

 to create a text field (20 characters wide)

JTextField textField = new JTextField(20);

7

Adding the Labels and Text Fields
 see CalcView constructor
 try making the text field editable and non-editable

8

Buttons
 a button responds to the user pointing and clicking the

mouse on it (or the user pressing the Enter key when
the button has the focus)

9 http://docs.oracle.com/javase/tutorial/uiswing/components/button.html

button
JButton

Buttons
 to create a button

JButton button = new JButton("text for the button");

10

Adding the Buttons
 see CalcView constructor
 try enabling and disabling the buttons

11

Event Driven Programming
 so far we have a View with some UI elements (buttons,

text fields)
 now we need to implement the actions

 each UI element is a source of events
 button pressed, slider moved, text changed (text field), etc.

 when the user interacts with a UI element an event is
triggered
 this causes an event object to be sent to every object

listening for that particular event
 the event object carries information about the event

 the event listeners respond to the event

12

Not a UML Diagram

13

event
source 1

event
source 2

event
 listener A

event
 listener B

event
 listener C

event
 listener D

event object 1

event object 2

Not a UML Diagram

14

Controller

event object "sum" "sum"

"subtract"

"multiply"

"divide"

"clear"
event object "clear"

AbstractButton ActionEvent
implements

ActionListener

Implementation
 each Jbutton has two inherited methods from
AbstractButton

 public void addActionListener(ActionListener l)

 public void setActionCommand(String actionCommand)

 for each JButton

1. call addActionListener with the controller as the
argument

2. call setActionCommand with a string describing what event
has occurred

15

CalcView: Add Actions
 see CalcView setCommand method

16

Controller
 controller
 processes and responds to events (such as user actions)

from the view and translates them to model method calls
 needs to interact with both the view and the model

but does not own the view or model
 aggregation

17

View

JFrame

Controller Model
1 1

View is a
subclass

of JFrame

Controller has
1 View

Controller has
1 Model

Controller Fields
 see CalcController

18

CalcController
 recall that our application only uses events that are

fired by buttons (Jbuttons)
 a button fires an ActionEvent event whenever it is

clicked
 CalcController listens for fired ActionEvents
 how? by implementing the ActionListener interface

public interface ActionListener

{
 void actionPerformed(ActionEvent e);
}

19

 CalcController was registered to listen for
ActionEvents fired by the various buttons in
CalcView (see method setCommand in CalcView)

 whenever a button fires an event, it passes an
ActionEvent object to CalcController via the
actionPerformed method
 actionPerformed is responsible for dealing with the

different actions (open, save, sum, etc)

20

Sum, Subtract, Multiply, Divide

21

C
a
l
c
V
i
e
w

C
a
l
c
C
o
n
t
r
o
l
l
e
r
 actionPerformed

getUserValue

C
a
l
c
M
o
d
e
l
 sum

2

1

3

setCalcValue 5

getCalcValue 4

CalcController: Other Actions
 see CalcController actionPerformed method

22

actionPerformed
 even with only 5 buttons our actionPerformed

method is unwieldy
 imagine what would happen if you tried to implement a

Controller this way for a big application

 rather than one big actionPerformed method we can
register a different ActionListener for each button
 each ActionListener will be an object that has its own

version of the actionPerformed method

23

Calculator Listeners

24

DivideListener

SubtractListener

SumListener

ArithmeticListener

Calculator Listener
 whenever a listener receives an event corresponding to

an arithmetic operation it does:
1. asks CalcView for the user value and converts it to an int
 getUserValue method

2. asks CalcModel to perform the arithmetic operation
 doOperation method

3. updates the calculated value in CalcView

25

ArithmeticListener

private abstract class ArithmeticListener implements
ActionListener {

 @Override

 public void actionPerformed(ActionEvent action) {

 int userValue = this.getUserValue();

 this.doOperation(userValue);

 this.setCalculatedValue();

}

26

1.
2.
3.

ArithmeticListener

 /**

 * Subclasses will override this method to add, subtract,

 * divide, multiply, etc., the userValue with the current

 * calculated value.

 */

 protected abstract void doOperation(int userValue);

27

ArithmeticListener

 private int getUserValue() {

 int userValue = 0;

 try {

 userValue = Integer.parseInt(getView().getUserValue());

 }

 catch(NumberFormatException ex)

 {}

 return userValue;

 }

 private void setCalculatedValue() {

 getView().setCalcValue("" + getModel().getCalcValue());

 }

 28

Note: these methods need
access to the view and model
which are associated with the
controller.

Inner Classes

 how do we give the listeners access to the view and
model?
 could use aggregation
 alternatively, we can make the listeners be inner classes of

the controller

29

Inner Classes
 an inner class is a (non-static) class that is defined

inside of another class

 public class Outer

 {

 // Outer's attributes and methods

 private class Inner

 { // Inner's attributes and methods

 }

 }

30

Inner Classes
 an inner class has access to the attributes and methods

of its enclosing class, even the private ones

 public class Outer

 {

 private int outerInt;

 private class Inner

 {

 public setOuterInt(int num) { outerInt = num; }

 }

 }

31

note not this.outerInt

use Outer.this.outerInt

ArithmeticListener
public class CalcController2 {

 // ...

 // inner class of CalcController2

 private abstract class ArithmeticListener implements

 ActionListener {

 // ...

 }

 // inner class of CalcController2

 private class SumListener extends ArithmeticListener {

 @Override

 protected void doOperation(int userValue) {

 // ...

 }

 }

}

 32

SumListener

private class SumListener extends ArithmeticListener {

 @Override

 protected void doOperation(int userValue) {

 getModel().sum(userValue);

 }

}

33

Why Use Inner Classes
 only the controller needs to create instances of the

various listeners
 i.e., the listeners are not useful outside of the controller
 making the listeners private inner classes ensures that only
CalcController can instantiate the listeners

 the listeners need access to private methods inside of
CalcController (namely getView and
getModel)
 inner classes can access private methods

34

Calculator using multiple listeners
 requires changes to the view to support the adding of

listeners
 see CalcView2

35

	Graphical User Interfaces (Part 2)
	View
	Simple Applications
	View as a Subclass of JFrame
	Implementing a View
	Labels and Text Fields
	Labels
	Adding the Labels and Text Fields
	Buttons
	Buttons
	Adding the Buttons
	Event Driven Programming
	Not a UML Diagram
	Not a UML Diagram
	Implementation
	CalcView: Add Actions
	Controller
	Controller Fields
	CalcController
	Slide Number 20
	Sum, Subtract, Multiply, Divide
	CalcController: Other Actions
	actionPerformed
	Calculator Listeners
	Calculator Listener
	ArithmeticListener
	ArithmeticListener
	ArithmeticListener
	Inner Classes
	Inner Classes
	Inner Classes
	ArithmeticListener
	SumListener
	Why Use Inner Classes
	Calculator using multiple listeners

