Graphical User Interfaces (Part 2)

View

> View

» presents the user with a sensory (visual, audio, haptic)

representation of the model state

» auser interface element (the user interface for simple
applications)

| £ Simple Calculator

File
Open File

Save File

lue 15

Input |5

Add

Subtract

Multiply

Divide

Clear

Simple Applications

» simple applications often consist of just a single
window (containing some controls)

JFrame
window with border, title, buttons

——

|5 JFrame

View as a Subclass of JFrame

a View can be Object

implemented as a subclass B

of a]Frame Component | user interface item
hundreds of inherited T

methods but onlya dozen |cConta
or so are commonly called

by the implementer (see
URL below)

ner | holds other components

plain window

=
aabing
=

Frame window with title and
border

<

(-
T1
> > 5 >
3
¢

=

http://java.sun.com/docs/books/tutorial/uiswing/components/frame.html

Implementing a View

» the View is responsible for creating:
» the Controller
» all of the user interface (UI) components

» buttons JButton
» labels JLabel
» text fields JTextField

» the View is also responsible for setting up the
communication of Ul events to the Controller

» each Ul component needs to know what object it should
send its events to

Labels and Text Fields

» alabel displays unselectable text and images

» atext field is a single line of editable text
» the ability to edit the text can be turned on and off

| £:| Simple Calculatum@ﬂlﬁﬂ
File ‘
Calculated Value 0 Input | K
e k ﬂ N\

I \ /" \
label text field (edit off) label text field (edit on)
JLabel JTextField JLabel JTextField

http://docs.oracle.com/javase/tutorial/uiswing/components/label.html

6 http://docs.oracle.com/javase/tutorial/uiswing/components/textfield.html

Labels

» to create a label

JLabel label = new JLabel(''text for the label');

» to create a text field (20 characters wide)

JTextField textField = new JTextField(20);

Adding the Labels and Text Fields

» see CalcView constructor
» try making the text field editable and non-editable

Buttons

» a button responds to the user pointing and clicking the
mouse on it (or the user pressing the Enter key when
the button has the focus)

r@ gimple Calculator —mli=h
File
Calculated Value 0 Input Add Subtract Multiply Divide Clear
button
JButton

9 http://docs.oracle.com/javase/tutorial/uiswing/components/button.html

Buttons

» to create a button

JButton button = new JButton(''text for the button');

10

Adding the Buttons

» see CalcView constructor
» try enabling and disabling the buttons

11

Event Driven Programming

» so far we have a View with some Ul elements (buttons,
text fields)

» now we need to implement the actions

» each Ul element is a source of events
» button pressed, slider moved, text changed (text field), etc.
» when the user interacts with a Ul element an event is
triggered

» this causes an event object to be sent to every object
listening for that particular event

» the event object carries information about the event

» the event listeners respond to the event

12

Not a UML Diagram

event

listener A

event object 1

event
listener B

[event |

source 1 J

event

listener C

event object 2

[event |

source 2 J

13

event
listener D

AVEER VAR VERRVA

Not a UML Diagram

event object "sum"

"subtract”

"multiply”

"divide"

Controller >

"clear"

event object "clear”

implements

AbstractButton ActionEvent ActionListener

14

Implementation

» each Jbutton has two inherited methods from
AbstractButton

public void addActionListener(ActionListener 1)

public void setActionCommand(String actionCommand)

» for each JButton

1. call addActionListener with the controller as the
argument

>. call setActionCommand with a string describing what event
has occurred

15

CalcView: Add Actions

» see CalcView setCommand method

16

Controller

» controller

» processes and responds to events (such as user actions)
from the view and translates them to model method calls

» needs to interact with both the view and the model
but does not own the view or model

» aggregation

o JFrame
View is a
subclass 4 1 1
of JFrame |View —<>| Controller [Model
Controller has Controller has

1 View 1 Model

17

Controller Fields

» see CalcController

18

CalcController

» recall that our application only uses events that are
fired by buttons (Jbuttons)

» a button fires an ActionEvent event whenever it is
clicked

» CalcController listens for fired ActionEvents
» how? by implementing the ActionListener interface

public interface ActionListener

{

void actionPerformed(ActionEvent e);

}

19

» CalcController was registered to listen for
ActionEvents fired by the various buttons in
CalcView (see method setCommand in CalcView)

» whenever a button fires an event, it passes an
ActionEvent object to CalcControl ler via the
actionPerformed method

» actionPerformed is responsible for dealing with the
different actions (open, save, sum, etc)

20

Sum, Subtract, Multiply, Divide

21

Add

CalcView

actionPerformed
>
getUserValue
o
setCalcValue
=

CalcController

sum

getCalcVvalue

>

CalcModel

CalcController: Other Actions

» see CalcController actionPerformed method

22

actionPerformed

» even with only 5 buttons our actionPerformed
method is unwieldy

» imagine what would happen if you tried to implement a
Controller this way for a big application

» rather than one big actionPerformed method we can
register a different ActionListener for each button

» each ActionListener will be an object that has its own
version of the actionPerformed method

23

Calculator Listeners

ArithmeticListener

A

SumListener

24

SubtractListener

DivideListener

Calculator Listener

» whenever a listener receives an event corresponding to
an arithmetic operation it does:
1. asks CalcView for the user value and converts it to an int
» getUserValue method

>. asks CalcModel to perform the arithmetic operation
» doOperation method

3. updates the calculated value in CalcView

25

ArithmeticListener

private abstract class ArithmeticListener implements
ActionListener {

@Override

public void actionPerformed(ActionEvent action) {
int userValue = this.getUserValue();

this.doOperation(userValue);

this.setCalculatedVvValue();

26

ArithmeticListener

/**

* Subclasses will override this method to add, subtract,
* divide, multiply, etc., the userValue with the current
* calculated value.

*/

protected abstract void doOperation(int userValue);

27

ArithmeticListener

private int getUserValue() {
int userValue = 0O;

try {

userValue = Integer.parselnt(getView() .getUserValue());

}

catch(NumberFormatException ex)

U

return userValue;

private void setCalculatedvalue() {

Note: these methods need
access to the view and model
which are associated with the
controller.

getView() .setCalcvalue(''" + getModel () .getCalcvalue());

28

Inner Classes

» how do we give the listeners access to the view and
model?
» could use aggregation

» alternatively, we can make the listeners be inner classes of
the controller

29

Inner Classes

» an inner class is a (non-static) class that is defined
inside of another class

public class Outer

{
// Outer®"s attributes and methods

private class Inner
{ // Inner"s attributes and methods

}
}

30

Inner Classes

» an inner class has access to the attributes and methods
of its enclosing class, even the private ones

public class Outer

{

private i1nt outerint;

private class Inner

{

public setOuterInt(int num) { outeriInt = num; }
} note not this.outerlint

h use Quter.this.outerint

31

ArithmeticListener

public class CalcController2 {
// ...

// 1nner class of CalcController2
private abstract class ArithmeticListener implements

ActionListener {
// ...

// 1nner class of CalcController2
private class SumListener extends ArithmeticListener {
@Override
protected void doOperation(int userValue) {
// ...

32

SumlListener

private class SumListener extends ArithmeticListener {
@Override
protected void doOperation(int userValue) {
getModel () -sum(userValue);

}
}

33

Why Use Inner Classes

» only the controller needs to create instances of the
various listeners

» i.e., the listeners are not useful outside of the controller

» making the listeners private inner classes ensures that only
CalcController can instantiate the listeners

» the listeners need access to private methods inside of
CalcController (namely getViewand
getModel)

» inner classes can access private methods

34

Calculator using multiple listeners

» requires changes to the view to support the adding of
listeners

» see CalcView2

35

	Graphical User Interfaces (Part 2)
	View
	Simple Applications
	View as a Subclass of JFrame
	Implementing a View
	Labels and Text Fields
	Labels
	Adding the Labels and Text Fields
	Buttons
	Buttons
	Adding the Buttons
	Event Driven Programming
	Not a UML Diagram
	Not a UML Diagram
	Implementation
	CalcView: Add Actions
	Controller
	Controller Fields
	CalcController
	Slide Number 20
	Sum, Subtract, Multiply, Divide
	CalcController: Other Actions
	actionPerformed
	Calculator Listeners
	Calculator Listener
	ArithmeticListener
	ArithmeticListener
	ArithmeticListener
	Inner Classes
	Inner Classes
	Inner Classes
	ArithmeticListener
	SumListener
	Why Use Inner Classes
	Calculator using multiple listeners

