
Inheritance (Part 3)

Abstract Classes

1

Abstract Classes
 sometimes you will find that you want the API for a

base class to have a method that the base class cannot
define
 e.g. you might want to know what a Dog's bark sounds like

but the sound of the bark depends on the breed of the dog
 you want to add the method bark to Dog but only the subclasses

of Dog can implement bark

2

Abstract Classes
 sometimes you will find that you want the API for a

base class to have a method that the base class cannot
define
 e.g. you might want to know the breed of a Dog but only the

subclasses have information about the breed
 you want to add the method getBreed to Dog but only the

subclasses of Dog can implement getBreed

3

 if the base class has methods that only subclasses can
define and the base class has fields common to all
subclasses then the base class should be abstract
 if you have a base class that just has methods that it cannot

implement then you probably want an interface
 abstract :

 (dictionary definition) existing only in the mind

 in Java an abstract class is a class that you cannot make

instances of
 e.g. http://docs.oracle.com/javase/7/docs/api/java/util/AbstractList.html

4

http://docs.oracle.com/javase/7/docs/api/java/util/AbstractList.html

 an abstract class provides a partial definition of a class
 the subclasses complete the definition

 an abstract class can define fields and methods
 subclasses inherit these

 an abstract class can define constructors
 subclasses must call these

 an abstract class can declare abstract methods
 subclasses must define these (unless the subclass is also

abstract)

5

Abstract Methods
 an abstract base class can declare, but not define, zero

or more abstract methods

 the base class is saying "all Dogs can provide a String
describing the breed, but only the subclasses know
enough to implement the method"

6

public abstract class Dog
{
 // fields, ctors, regular methods

 public abstract String getBreed();
}

Abstract Methods

 the non-abstract subclasses must provide definitions
for all abstract methods
 consider getBreed in Mix

7

public class Mix extends Dog

{ // stuff from before...

 @Override public String getBreed() {

 if(this.breeds.isEmpty()) {

 return "mix of unknown breeds";

 }

 StringBuffer b = new StringBuffer();

 b.append("mix of");

 for(String breed : this.breeds) {

 b.append(" " + breed);

 }
 return b.toString();

}

8

PureBreed
 a purebreed dog is a dog with a single breed
 one String field to store the breed

 note that the breed is determined by the subclasses
 the class PureBreed cannot give the breed field a value
 but it can implement the method getBreed

 the class PureBreed defines an field common to all
subclasses and it needs the subclass to inform it of the
actual breed
 PureBreed is also an abstract class

9

public abstract class PureBreed extends Dog

{

 private String breed;

 public PureBreed(String breed) {

 super();

 this.breed = breed;

 }

 public PureBreed(String breed, int size, int energy) {

 super(size, energy);

 this.breed = breed;

 }

10

 @Override public String getBreed()

 {

 return this.breed;

 }

}

11

Subclasses of PureBreed

 the subclasses of PureBreed are responsible for
setting the breed
 consider Komondor

12

Komondor
public class Komondor extends PureBreed

{

 private final String BREED = "komondor";

 public Komondor() {

 super(BREED);

 }

 public Komondor(int size, int energy) {

 super(BREED, size, energy);

 }

 // other Komondor methods...

}

13

Inheritance (Part 4)

Static Features; Interfaces

14

Static Fields and Inheritance

 static fields behave the same as non-static fields in
inheritance
 public and protected static fields are inherited by

subclasses, and subclasses can access them directly by name
 private static fields are not inherited and cannot be

accessed directly by name
 but they can be accessed/modified using public and protected

methods

15

Static Fields and Inheritance

 the important thing to remember about static fields

and inheritance
 there is only one copy of the static field shared among the

declaring class and all subclasses

 consider trying to count the number of Dog objects
created by using a static counter

16

// the wrong way to count the number of Dogs created
public abstract class Dog {
 // other fields...
 static protected int numCreated = 0;

 Dog() {
 // ...
 Dog.numCreated++;
 }

 public static int getNumberCreated() {
 return Dog.numCreated;
 }

 // other contructors, methods...
}

17

protected, not private, so that
subclasses can modify it directly

// the wrong way to count the number of Dogs created

public class Mix extends Dog

{

 // fields...

 Mix()

 {

 super();

 Mix.numCreated++;

 }

 // other contructors, methods...

}

18

// too many dogs!

public class TooManyDogs

{

 public static void main(String[] args)

 {

 Mix mutt = new Mix();

 System.out.println(Mix.getNumberCreated());

 }

}

prints 2

19

What Went Wrong?
 there is only one copy of the static field shared among

the declaring class and all subclasses
 Dog declared the static field
 Dog increments the counter everytime its constructor is

called
 Mix inherits and shares the single copy of the field
 Mix constructor correctly calls the superclass constructor

 which causes numCreated to be incremented by Dog
 Mix constructor then incorrectly increments the counter

20

Counting Dogs and Mixes

 suppose you want to count the number of Dog
instances and the number of Mix instances
 Mix must also declare a static field to hold the count

 somewhat confusingly, Mix can give the counter the same name
as the counter declared by Dog

21

public class Mix extends Dog
{
 // other fields...
 private static int numCreated = 0; // bad style

 public Mix()
 {
 super(); // will increment Dog.numCreated
 // other Mix stuff...
 numCreated++; // will increment Mix.numCreated
 }

 // ...

22

Hiding Fields
 note that the Mix field numCreated has the same

name as an field declared in a superclass
 whenever numCreated is used in Mix, it is the Mix

version of the field that is used

 if a subclass declares an field with the same name as a
superclass field, we say that the subclass field hides the
superclass field
 considered bad style because it can make code hard to read

and understand
 should change numCreated to numMixCreated in Mix

23

Static Methods and Inheritance
 there is a big difference between calling a static

method and calling a non-static method when dealing
with inheritance

 there is no dynamic dispatch on static methods
 therefore, you cannot override a static method

24

25

public abstract class Dog {

 private static int numCreated = 0;

 public static int getNumCreated() {

 return Dog.numCreated;

 }

}

public class Mix {

 private static int numMixCreated = 0;

 public static int getNumCreated() {

 return Mix.numMixCreated;
 }

}

public class Komondor {
 private static int numKomondorCreated = 0;

 public static int getNumCreated() {

 return Komondor.numKomondorCreated;
 }

}

notice no @Override

notice no @Override

26

public class WrongCount {

 public static void main(String[] args) {

 Dog mutt = new Mix();

 Dog shaggy = new Komondor();

 System.out.println(mutt.getNumCreated());

 System.out.println(shaggy.getNumCreated());

 System.out.println(Mix.getNumCreated());

 System.out.println(Komondor.getNumCreated());

 }

}

prints 2

 2

 1

 1

What's Going On?
 there is no dynamic dispatch on static methods

 because the declared type of mutt is Dog, it is the Dog

version of getNumCreated that is called

 because the declared type of shaggy is Dog, it is the
Dog version of getNumCreated that is called

27

Hiding Methods
 notice that Mix.getNumCreated and
Komondor.getNumCreated work as expected

 if a subclass declares a static method with the same
name as a superclass static method, we say that the
subclass static method hides the superclass static
method
 you cannot override a static method, you can only hide it
 hiding static methods is considered bad form because it

makes code hard to read and understand

28

 the client code in WrongCount illustrates two cases of
bad style, one by the client and one by the
implementer of the Dog hierarchy
1. the client should not have used an instance to call a static

method
2. the implementer should not have hidden the static

method in Dog

29

Interfaces

30

Interfaces
 recall that you typically use an abstract class when you

have a superclass that has fields and methods that are
common to all subclasses
 the abstract class provides a partial implementation that

the subclasses must complete
 subclasses can only inherit from a single superclass

 if you want classes to support a common API then you

probably want to define an interface

31

Interfaces
 in Java an interface is a reference type (similar to a

class)
 an interface says what methods an object must have

and what the methods are supposed to do
 i.e., an interface is an API

32

Interfaces
 an interface can contain only
 constants
 method signatures
 nested types (ignore for now)

 there are no method bodies
 interfaces cannot be instantiated—they can only be

implemented by classes or extended by other interfaces

33

Interfaces Already Seen

public interface Comparable<T>

{

 int compareTo(T o);

}

34

access—either public or
package-private (blank)

interface
name

Interfaces Already Seen
public interface Iterable<T>
{
 Iterator<T> iterator();
}

public interface Collection<E> extends Iterable<E>
{
 boolean add(E e);
 void clear();
 boolean contains(Object o);
 // many more method signatures...
}

35

access—either public or
package-private (blank)

interface
name

parent
interfaces

Interfaces Already Seen

public interface List<E> extends Collection<E>

{

 boolean add(E e);

 void add(int index, E element);

 boolean addAll(Collection<? extends E> c);

 // many more method signatures...

}

36

Creating an Interface
 decide on a name
 decide what methods you need in the interface

 this is harder than it sounds because...
 once an interface is released and widely implemented, it is

almost impossible to change
 if you change the interface, all classes implementing the interface

must also change

37

Function Interface
 in mathematics, a real-valued scalar function of one

real scalar variable maps a real value to another real
value

38

y = f (x)

Creating an Interface
 decide on a name
 DoubleToDoubleFunction

 decide what methods you need in the interface
 double at(double x)
 double[] at(double[] x)

39

Creating an Interface

public interface DoubleToDoubleFunction {

 double at(double x);

 double[] at(double[] x);

}

40

Classes that Implement an Interface
 a class that implements an interface says so by using

the implements keyword
 consider the function f (x) = x2

41

public class Square implements
DoubleToDoubleFunction {

 public double at(double x) {
 return x * x;
 }

 public double[] at(double[] x) {
 double[] result = new double[x.length];
 for (int i = 0; i < x.length; i++) {
 result[i] = x[i] * x[i];
 }
 return result;
 }
}

42

Implementing Multiple Interfaces
 unlike inheritance where a subclass can extend only

one superclass, a class can implement as many
interfaces as it needs to

public class ArrayList<E>

 extends AbstractList<E>

 implements List<E>,

 RandomAccess,

 Cloneable,

 Serializable

43

superclass

interfaces

	Inheritance (Part 3)
	Abstract Classes
	Abstract Classes
	Slide Number 4
	Slide Number 5
	Abstract Methods
	Abstract Methods
	Slide Number 8
	PureBreed
	Slide Number 10
	Slide Number 11
	Subclasses of PureBreed
	Komondor
	Inheritance (Part 4)
	Static Fields and Inheritance
	Static Fields and Inheritance
	Slide Number 17
	Slide Number 18
	Slide Number 19
	What Went Wrong?
	Counting Dogs and Mixes
	Slide Number 22
	Hiding Fields
	Static Methods and Inheritance
	Slide Number 25
	Slide Number 26
	What's Going On?
	Hiding Methods
	Slide Number 29
	Interfaces
	Interfaces
	Interfaces
	Interfaces
	Interfaces Already Seen
	Interfaces Already Seen
	Interfaces Already Seen
	Creating an Interface
	Function Interface
	Creating an Interface
	Creating an Interface
	Classes that Implement an Interface
	Slide Number 42
	Implementing Multiple Interfaces

