
Inheritance (Part 2)

1

Preconditions and Inheritance
 precondition
 what the method assumes to be true about the arguments

passed to it

 inheritance (is-a)
 a subclass is supposed to be able to do everything its

superclasses can do

 how do they interact?

2

Strength of a Precondition
 to strengthen a precondition means to make the

precondition more restrictive

 // Dog setEnergy

 // 1. no precondition

 // 2. 1 <= energy

 // 3. 1 <= energy <= 10

 public void setEnergy(int energy)

 { ... }

3

weakest precondition

strongest precondition

Preconditions on Overridden Methods
 a subclass can change a precondition on a method but

it must not strengthen the precondition
 a subclass that strengthens a precondition is saying that it

cannot do everything its superclass can do

4

// Dog setEnergy
// assume non-final
// @pre. none

public
void setEnergy(int nrg)
{ // ... }

// Mix setEnergy
// bad : strengthen precond.
// @pre. 1 <= nrg <= 10

public
void setEnergy(int nrg)
{
 if (nrg < 1 || nrg > 10)
 { // throws exception }
 // ...
}

 client code written for Dogs now fails when given a
Mix

 remember: a subclass must be able to do everything its
ancestor classes can do; otherwise, clients will be
(unpleasantly) surprised

5

// client code that sets a Dog's energy to zero
public void walk(Dog d)
{
 d.setEnergy(0);
}

Postconditions and Inheritance
 postcondition
 what the method promises to be true when it returns

 the method might promise something about its return value
 "returns size where size is between 1 and 10 inclusive"

 the method might promise something about the state of the
object used to call the method
 "sets the size of the dog to the specified size"

 the method might promise something about one of its parameters

 how do postconditions and inheritance interact?

6

Strength of a Postcondition
 to strengthen a postcondition means to make the

postcondition more restrictive

 // Dog getSize

 // 1. no postcondition

 // 2. 1 <= this.size

 // 3. 1 <= this.size <= 10

 public int getSize()

 { ... }

7

weakest postcondition

strongest postcondition

Postconditions on Overridden Methods
 a subclass can change a postcondition on a method but

it must not weaken the postcondition
 a subclass that weakens a postcondition is saying that it

cannot do everything its superclass can do

8

// Dog getSize
//
// @post. 1 <= size <= 10

public
int getSize()
{ // ... }

// Dogzilla getSize
// bad : weaken postcond.
// @post. 1 <= size

public
int getSize()
{ // ... }

Dogzilla: a made-up breed of dog
that has no upper limit on its size

 client code written for Dogs can now fail when given a
Dogzilla

 remember: a subclass must be able to do everything its
ancestor classes can do; otherwise, clients will be
(unpleasantly) surprised

9

// client code that assumes Dog size <= 10
public String sizeToString(Dog d)
{
 int sz = d.getSize();
 String result = "";
 if (sz < 4) result = "small";
 else if (sz < 7) result = "medium";
 else if (sz <= 10) result = "large";
 return result;
}

Exceptions
 all exceptions are objects that are subclasses of
java.lang.Throwable

10

Throwable

Exception

RuntimeException and many, many more

IllegalArgumentException and many more

AJ chapter 9

User Defined Exceptions
 you can define your own exception hierarchy
 often, you will subclass Exception

11

Exception

DogException

BadSizeException NoFoodException BadDogException

public
class DogException extends Exception

Exceptions and Inheritance
 a method that claims to throw a checked exception of

type X is allowed to throw any checked exception type
that is a subclass of X
 this makes sense because exceptions are objects and

subclass objects are substitutable for ancestor classes

// in Dog
public void someDogMethod() throws DogException
{
 // can throw a DogException, BadSizeException,
 // NoFoodException, or BadDogException
}

12

 a method that overrides a superclass method that
claims to throw a checked exception of type X can also
claim to throw a checked exception of type X or a
subclass of X
 remember: a subclass is substitutable for the parent type

// in Mix
@Override
public void someDogMethod() throws DogException
{
 // ...
}

13

Which are Legal?
 in Mix

@Override
public void someDogMethod() throws BadDogException

@Override
public void someDogMethod() throws Exception

@Override
public void someDogMethod()

@Override
public void someDogMethod()
 throws DogException, IllegalArgumentException

14

Review
1. Inheritance models the ______ relationship between

classes.
2. Dog is a ______ of Object.
3. Dog is a ______ of Mix.
4. Can a Dog instance do everything a Mix instance

can?
5. Can a Mix instance do everything a Dog instance

can?
6. Is a Dog instance substitutable for a Mix instance?
7. Is a Mix instance substitutable for a Dog instance?

15

8. Can a subclass use the private fields of its superclass?
9. Can a subclass use the private methods of its

superclass?
10. Suppose you have a class X that you do not want

anyone to extend. How do you enforce this?
11. Suppose you have an immutable class X. Someone

extends X to make it mutable. Is this legal?
12. What do you need to do to enforce immutability?

16

13. Suppose you have a class Y that extends X.
a. Does each Y instance have a X instance inside of it?
b. How do you construct the X subobject inside of the Y

instance?
c. What syntax is used to call the superclass constructor?
d. What is constructed first–the X subobject or the Y object?
e. Suppose Y introduces a brand new method that needs to

call a public method in X named xMethod. How does the
new Y method call xMethod?

f. Suppose Y overrides a public method in X named
xMethod. How does the overriding Y method call
xMethod?

17

14. Suppose you have a class Y that extends X. X has a
method with the following precondition:
@pre. value must be a multiple of 2

If Y overrides the method which of the following are
acceptable preconditions for the overriding method:

a. @pre. value must be a multiple of 2
b. @pre. value must be odd
c. @pre. value must be a multiple of 2 and must be less

than 100
d. @pre. value must be a multiple of 10
e. @pre. none

18

14. Suppose you have a class Y that extends X. X has a
method with the following postcondition:

@return – A String of length 10

If Y overrides the method which of the following are
acceptable postconditions for the overriding method:

a. @return – A String of length 9 or 10

b. @return – The String "weimaraner"
c. @return – An int
d. @return – The same String returned by toString
e. @return – A random String of length 10

19

15. Suppose Dog toString has the following Javadoc:
 /*

 * Returns a string representation of a dog.

 * The string is the size of the dog followed by a

 * a space followed by the energy.

 * @return The string representation of the dog.

 */

 Does this affect subclasses of Dog?

20

Inheritance Recap
 inheritance allows you to create subclasses that are

substitutable for their ancestors
 inheritance interacts with preconditions, postconditions,

and exception throwing
 subclasses
 inherit all non-private features
 can add new features
 can change the behaviour of non-final methods by

overriding the parent method
 contain an instance of the superclass

 subclasses must construct the instance via a superclass
constructor

21

Puzzle 3

22

 Write the class Enigma, which extends Object, so that
the following program prints false:

 public class Conundrum

 {

 public static void main(String[] args)

 {

 Enigma e = new Enigma();

 System.out.println(e.equals(e));

 }

 }

 You must not override Object.equals()
[Java Puzzlers by Joshua Block and Neal Gaffer]

Polymorphism
 inheritance allows you to define a base class that has

fields and methods
 classes derived from the base class can use the public and

protected base class fields and methods
 polymorphism allows the implementer to change the

behaviour of the derived class methods

23

// client code

public void print(Dog d) {

 System.out.println(d.toString());

}

// later on...

Dog fido = new Dog();

CockerSpaniel lady = new CockerSpaniel();

Mix mutt = new Mix();

this.print(fido);

this.print(lady);

this.print(mutt);

24

Dog toString
CockerSpaniel toString
Mix toString

 notice that fido, lady, and mutt were declared as
Dog, CockerSpaniel, and Mutt

 what if we change the declared type of fido, lady,
and mutt ?

25

// client code

public void print(Dog d) {

 System.out.println(d.toString());

}

// later on...

Dog fido = new Dog();

Dog lady = new CockerSpaniel();

Dog mutt = new Mix();

this.print(fido);

this.print(lady);

this.print(mutt);

26

Dog toString
CockerSpaniel toString
Mix toString

 what if we change the print method parameter type
to Object ?

27

// client code
public void print(Object obj) {
 System.out.println(obj.toString());
}

// later on...
Dog fido = new Dog();
Dog lady = new CockerSpaniel();
Dog mutt = new Mix();
this.print(fido);
this.print(lady);
this.print(mutt);
this.print(new Date());

28

Dog toString
CockerSpaniel toString
Mix toString
Date toString

Late Binding
 polymorphism requires late binding of the method

name to the method definition
 late binding means that the method definition is

determined at run-time

29

obj.toString()
non-static method

run-time type of
the instance obj

Declared vs Run-time type

30

Dog lady = new CockerSpaniel();

declared
type

run-time or actual
type

 the declared type of an instance determines what

methods can be used

 the name lady can only be used to call methods in Dog
 lady.someCockerSpanielMethod() won't compile

31

Dog lady = new CockerSpaniel();

 the actual type of the instance determines what

definition is used when the method is called

 lady.toString() uses the CockerSpaniel definition

of toString

32

Dog lady = new CockerSpaniel();

	Inheritance (Part 2)
	Preconditions and Inheritance
	Strength of a Precondition
	Preconditions on Overridden Methods
	Slide Number 5
	Postconditions and Inheritance
	Strength of a Postcondition
	Postconditions on Overridden Methods
	Slide Number 9
	Exceptions
	User Defined Exceptions
	Exceptions and Inheritance
	Slide Number 13
	Which are Legal?
	Review
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Inheritance Recap
	Puzzle 3
	Polymorphism
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Late Binding
	Declared vs Run-time type
	Slide Number 31
	Slide Number 32

