
Inheritance (Part 2) 
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Preconditions and Inheritance 
 precondition 
 what the method assumes to be true about the arguments 

passed to it 
 

 inheritance (is-a) 
 a subclass is supposed to be able to do everything its 

superclasses can do 
 

 how do they interact? 
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Strength of a Precondition 
 to strengthen a precondition means to make the 

precondition more restrictive 
 

 // Dog setEnergy 

 // 1. no precondition 

 // 2. 1 <= energy 

 // 3. 1 <= energy <= 10 

 public void setEnergy(int energy) 

 { ... } 
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weakest precondition 

strongest precondition 



Preconditions on Overridden Methods 
 a subclass can change a precondition on a method but 

it must not strengthen the precondition 
 a subclass that strengthens a precondition is saying that it 

cannot do everything its superclass can do 
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// Dog setEnergy 
// assume non-final 
// @pre. none 
 
public 
void setEnergy(int nrg) 
{ // ... } 

// Mix setEnergy 
// bad : strengthen precond. 
// @pre. 1 <= nrg <= 10 
 
public 
void setEnergy(int nrg) 
{ 
  if (nrg < 1 || nrg > 10) 
  { // throws exception } 
  // ... 
} 



 client code written for Dogs now fails when given a 
Mix  
 
 
 
 

 remember: a subclass must be able to do everything its 
ancestor classes can do; otherwise, clients will be 
(unpleasantly) surprised 
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// client code that sets a Dog's energy to zero 
public void walk(Dog d) 
{ 
  d.setEnergy(0); 
} 
 



Postconditions and Inheritance 
 postcondition 
 what the method promises to be true when it returns 

 the method might promise something about its return value 
 "returns size where size is between 1 and 10 inclusive" 

 the method might promise something about the state of the 
object used to call the method 
 "sets the size of the dog to the specified size" 

 the method might promise something about one of its parameters 
 

 how do postconditions and inheritance interact? 
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Strength of a Postcondition 
 to strengthen a postcondition means to make the 

postcondition more restrictive 
 

 // Dog getSize 

 // 1. no postcondition 

 // 2. 1 <= this.size 

 // 3. 1 <= this.size <= 10 

 public int getSize() 

 { ... } 
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weakest postcondition 

strongest postcondition 



Postconditions on Overridden Methods 
 a subclass can change a postcondition on a method but 

it must not weaken the postcondition 
 a subclass that weakens a postcondition is saying that it 

cannot do everything its superclass can do 
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// Dog getSize 
// 
// @post. 1 <= size <= 10 
 
public 
int getSize() 
{ // ... } 

// Dogzilla getSize 
// bad : weaken postcond. 
// @post. 1 <= size 
 
public 
int getSize() 
{ // ... } 

Dogzilla: a made-up breed of dog 
that has no upper limit on its size 



 client code written for Dogs can now fail when given a 
Dogzilla  
 
 
 
 
 
 

 remember: a subclass must be able to do everything its 
ancestor classes can do; otherwise, clients will be 
(unpleasantly) surprised 
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// client code that assumes Dog size <= 10 
public String sizeToString(Dog d) 
{ 
  int sz = d.getSize(); 
  String result = ""; 
  if (sz < 4)        result = "small"; 
  else if (sz < 7)   result = "medium"; 
  else if (sz <= 10) result = "large"; 
  return result; 
} 
 



Exceptions 
 all exceptions are objects that are subclasses of 
java.lang.Throwable  
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Throwable 

Exception 

RuntimeException ... ... and many, many more 

IllegalArgumentException ... ... and many more 

AJ chapter 9 



User Defined Exceptions 
 you can define your own exception hierarchy 
 often, you will subclass Exception 
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Exception 

DogException 

BadSizeException NoFoodException BadDogException 

public 
class DogException extends Exception 



Exceptions and Inheritance 
 a method that claims to throw a checked exception of 

type X is allowed to throw any checked exception type 
that is a subclass of X  
 this makes sense because exceptions are objects and 

subclass objects are substitutable for ancestor classes 
 

// in Dog 
public void someDogMethod() throws DogException 
{ 
  // can throw a DogException, BadSizeException, 
  //             NoFoodException, or BadDogException 
} 
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 a method that overrides a superclass method that 
claims to throw a checked exception of type X can also 
claim to throw a checked exception of type X or a 
subclass of X  
 remember: a subclass is substitutable for the parent type 

 
 

// in Mix 
@Override 
public void someDogMethod() throws DogException 
{ 
  // ... 
} 
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Which are Legal? 
 in Mix  

@Override 
public void someDogMethod() throws BadDogException 

 
@Override 
public void someDogMethod() throws Exception 

 
@Override 
public void someDogMethod() 
 
@Override 
public void someDogMethod() 
      throws DogException, IllegalArgumentException 
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Review 
1. Inheritance models the ______ relationship between 

classes. 
2. Dog is a ______ of Object. 
3. Dog is a ______ of Mix. 
4. Can a Dog instance do everything a Mix instance 

can? 
5. Can a Mix instance do everything a Dog instance 

can? 
6. Is a Dog instance substitutable for a Mix instance? 
7. Is a Mix instance substitutable for a Dog instance? 
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8. Can a subclass use the private fields of its superclass? 
9. Can a subclass use the private methods of its 

superclass? 
10. Suppose you have a class X that you do not want 

anyone to extend. How do you enforce this? 
11. Suppose you have an immutable class X. Someone 

extends X to make it mutable. Is this legal? 
12. What do you need to do to enforce immutability? 
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13. Suppose you have a class Y that extends X. 
a. Does each Y instance have a X instance inside of it? 
b. How do you construct the X subobject inside of the Y 

instance? 
c. What syntax is used to call the superclass constructor? 
d. What is constructed first–the X subobject or the Y object? 
e. Suppose Y introduces a brand new method that needs to 

call a public method in X named xMethod. How does the 
new Y method call xMethod? 

f. Suppose Y overrides a public method in X named 
xMethod. How does the overriding Y method call 
xMethod? 
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14. Suppose you have a class Y that extends X. X has a 
method with the following precondition: 
@pre. value must be a multiple of 2  
 
If Y overrides the method which of the following are 
acceptable preconditions for the overriding method: 

 
a. @pre. value must be a multiple of 2 
b. @pre. value must be odd 
c. @pre. value must be a multiple of 2 and must be less 

than 100 
d. @pre. value must be a multiple of 10 
e. @pre. none 
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14. Suppose you have a class Y that extends X. X has a 
method with the following postcondition: 
 
@return – A String of length 10 

 
If Y overrides the method which of the following are 
acceptable postconditions for the overriding method: 

 
a. @return – A String of length 9 or 10 

b. @return – The String "weimaraner" 
c. @return – An int 
d. @return – The same String returned by toString 
e. @return – A random String of length 10 
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15. Suppose Dog toString has the following Javadoc: 
 /* 

  * Returns a string representation of a dog. 

  * The string is the size of the dog followed by a 

  * a space followed by the energy. 

  * @return The string representation of the dog. 

  */ 

 Does this affect subclasses of Dog? 
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Inheritance Recap 
 inheritance allows you to create subclasses that are 

substitutable for their ancestors 
 inheritance interacts with preconditions, postconditions, 

and exception throwing 
 subclasses 
 inherit all non-private features 
 can add new features 
 can change the behaviour of non-final methods by 

overriding the parent method 
 contain an instance of the superclass 

 subclasses must construct the instance via a superclass 
constructor 
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Puzzle 3 
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 Write the class Enigma, which extends Object, so that 
the following program prints false: 

 

  public class Conundrum 

  { 

    public static void main(String[] args) 

    { 

      Enigma e = new Enigma(); 

      System.out.println( e.equals(e) ); 

    } 

  } 
 

 You must not override Object.equals()  
[Java Puzzlers by Joshua Block and Neal Gaffer] 



Polymorphism 
 inheritance allows you to define a base class that has 

fields and methods 
 classes derived from the base class can use the public and 

protected base class fields and methods 
 polymorphism allows the implementer to change the 

behaviour of the derived class methods 
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// client code 

public void print(Dog d) { 

  System.out.println( d.toString() ); 

} 

 

// later on... 

Dog           fido = new Dog(); 

CockerSpaniel lady = new CockerSpaniel(); 

Mix           mutt = new Mix(); 

this.print(fido); 

this.print(lady); 

this.print(mutt); 
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Dog toString 
CockerSpaniel toString 
Mix toString 



 
 
 

 notice that fido, lady, and mutt were declared as 
Dog, CockerSpaniel, and Mutt  

 what if we change the declared type of fido, lady, 
and mutt ? 
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// client code 

public void print(Dog d) { 

  System.out.println( d.toString() ); 

} 

 

// later on... 

Dog           fido = new Dog(); 

Dog           lady = new CockerSpaniel(); 

Dog           mutt = new Mix(); 

this.print(fido); 

this.print(lady); 

this.print(mutt); 
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Dog toString 
CockerSpaniel toString 
Mix toString 



 
 
 

 what if we change the print method parameter type 
to Object ? 
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// client code 
public void print(Object obj) { 
  System.out.println( obj.toString() ); 
} 
 
// later on... 
Dog           fido = new Dog(); 
Dog           lady = new CockerSpaniel(); 
Dog           mutt = new Mix(); 
this.print(fido); 
this.print(lady); 
this.print(mutt); 
this.print(new Date()); 
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Dog toString 
CockerSpaniel toString 
Mix toString 
Date toString 



Late Binding 
 polymorphism requires late binding of the method 

name to the method definition 
 late binding means that the method definition is 

determined at run-time 
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obj.toString() 
non-static method 

run-time type of 
the instance obj  



Declared vs Run-time type 
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Dog lady = new CockerSpaniel(); 

declared 
type 

run-time or actual 
type 



 
 the declared type of an instance determines what 

methods can be used 
 
 
 the name lady can only be used to call methods in Dog  
 lady.someCockerSpanielMethod() won't compile 

 

31 

Dog lady = new CockerSpaniel(); 



 
 the actual type of the instance determines what 

definition is used when the method is called 
 
 
 lady.toString() uses the CockerSpaniel definition 

of toString 
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Dog lady = new CockerSpaniel(); 
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