
A Singleton Puzzle: What is Printed?

1

public class Elvis {

 public static final Elvis INSTANCE = new Elvis();

 private final int beltSize;

 private static final int CURRENT_YEAR =

 Calendar.getInstance().get(Calendar.YEAR);

 private Elvis() { this.beltSize = CURRENT_YEAR – 1930; }

 public int getBeltSize() { return this.beltSize; }

 public static void main(String[] args) {

 System.out.println("Elvis has a belt size of " +

 INSTANCE.getBeltSize());

 }

}
from Java Puzzlers by Joshua Bloch and Neal Gafter

A Singleton Puzzle: Solution
 Elvis has a belt size of -1930 is printed
 to solve the puzzle you need to know how Java

initializes classes (JLS 12.4)
 the call to main() triggers initialization of the Elvis

class (because main() belongs to the class Elvis)
 the static attributes INSTANCE and CURRENT_YEAR are

first given default values (null and 0, respectively)
 then the attributes are initialized in order of

appearance

2

1. public static final Elvis INSTANCE = new Elvis();

2. this.beltSize = CURRENT_YEAR – 1930;

3. private static final int CURRENT_YEAR =
 Calendar.getInstance().get(Calendar.YEAR);

• the problem occurs because initializing INSTANCE
requires a valid CURRENT_YEAR

• solution: move CURRENT_YEAR before INSTANCE

3

CURRENT_YEAR == 0
at this point

Aggregation and Composition

[notes Chapter 4]

4

Aggregation and Composition

 the terms aggregation and composition are used to

describe a relationship between objects

 both terms describe the has-a relationship
 the university has-a collection of departments
 each department has-a collection of professors

5

Aggregation and Composition

 composition implies ownership
 if the university disappears then all of its departments disappear
 a university is a composition of departments

 aggregation does not imply ownership

 if a department disappears then the professors do not disappear
 a department is an aggregation of professors

6

Aggregation
 suppose a Person has a name and a date of birth

public class Person {

 private String name;

 private Date birthDate;

 public Person(String name, Date birthDate) {

 this.name = name;

 this.birthDate = birthDate;

 }

 public Date getBirthDate() {

 return birthDate;

 }

}

7

 the Person example uses aggregation
 notice that the constructor does not make a copy of the

name and birth date objects passed to it
 the name and birth date objects are shared with the client
 both the client and the Person instance are holding

references to the same name and birth date

8

// client code somewhere
String s = "Billy Bob";
Date d = new Date(91, 2, 26); // March 26, 1991
Person p = new Person(s, d);

9

64 client

s 250

d 350

p 450

...

250 String object

...

...

350 Date object

...

...

450 Person object

name 250

birthDate 350

 what happens when the client modifies the Date
instance?

 prints Fri Nov 03 00:00:00 EST 1995

10

// client code somewhere
String s = "Billy Bob";
Date d = new Date(90, 2, 26); // March 26, 1990
Person p = new Person(s, d);

d.setYear(95); // November 3, 1995
d.setMonth(10);
d.setDate(3);
System.out.println(p.getBirthDate());

 because the Date instance is shared by the client and
the Person instance:
 the client can modify the date using d and the Person

instance p sees a modified birthDate
 the Person instance p can modify the date using birthDate

and the client sees a modified date d

11

 note that even though the String instance is shared
by the client and the Person instance p, neither the
client nor p can modify the String
 immutable objects make great building blocks for other

objects
 they can be shared freely without worrying about their state

12

UML Class Diagram for Aggregation

13

Person String Date

1 1

number of Date
objects each Person has

number of String
objects each Person has

open diamonds
indicate aggregation

Another Aggregation Example
 3D videogames use models that are a three-

dimensional representations of geometric data
 the models may be represented by:

 three-dimensional points (particle systems)
 simple polygons (triangles, quadrilaterals)
 smooth, continuous surfaces (splines, parametric surfaces)
 an algorithm (procedural models)

 rendering the objects to the screen usually results in
drawing triangles
 graphics cards have specialized hardware that does this very

fast

14

15

16

Aggregation Example
 a Triangle has 3 three-dimensional Points

17

Triangle Point
3

Triangle

+ Triangle(Point, Point, Point)

+ getA() : Point

+ getB() : Point

+ getC() : Point

+ setA(Point) : void

+ setB(Point) : void

+ setC(Point) : void

Point

+ Point(double, double, double)

+ getX() : double

+ getY() : double

+ getZ() : double

+ setX(double) : void

+ setY(double) : void

+ setZ(double) : void

Triangle
// attributes and constructor

public class Triangle {

 private Point pA;

 private Point pB;

 private Point pC;

 public Triangle(Point c, Point b, Point c) {

 this.pA = a;

 this.pB = b;

 this.pC = c;

 }

18

Triangle
 // accessors

 public Point getA() {

 return this.pA;

 }

 public Point getB() {

 return this.pB;

 }

 public Point getC() {

 return this.pC;

 }

19

Triangle
 // mutators

 public void setA(Point p) {

 this.pA = p;

 }

 public void setB(Point p) {

 this.pB = p;

 }

 public void setC(Point p) {

 this.pC = p;

 }

}

20

Triangle Aggregation
 implementing Triangle is very easy
 attributes (3 Point references)
 are references to existing objects provided by the client

 accessors
 give clients a reference to the aggregated Points

 mutators
 set attributes to existing Points provided by the client

 we say that the Triangle attributes are aliases

21

 // client code

 Point a = new Point(-1.0, -1.0, -3.0);

 Point b = new Point(0.0, 1.0, -3.0);

 Point c = new Point(2.0, 0.0, -3.0);

 Triangle tri = new Triangle(a, b, c);

22

23

64 client

a 250

b 350

c 450

tri 550

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 450

 // client code

 Point a = new Point(-1.0, -1.0, -3.0);

 Point b = new Point(0.0, 1.0, -3.0);

 Point c = new Point(2.0, 0.0, -3.0);

 Triangle tri = new Triangle(a, b, c);

 Point d = tri.getA();

 boolean sameObj = a == d;

24

client asks the triangle for one
of the triangle points and checks
if the point is the same object
that was used to create the triangle

25

64 client

a 250

b 350

c 450

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 450

 // client code

 Point a = new Point(-1.0, -1.0, -3.0);

 Point b = new Point(0.0, 1.0, -3.0);

 Point c = new Point(2.0, 0.0, -3.0);

 Triangle tri = new Triangle(a, b, c);

 Point d = tri.getA();

 boolean sameObj = a == d;

 tri.setC(d);

26

client asks the triangle to set
one point of the triangle to d

27

64 client

a 250

b 350

c 450

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 250

 // client code

 Point a = new Point(-1.0, -1.0, -3.0);

 Point b = new Point(0.0, 1.0, -3.0);

 Point c = new Point(2.0, 0.0, -3.0);

 Triangle tri = new Triangle(a, b, c);

 Point d = tri.getA();

 boolean sameObj = a == d;

 tri.setC(d);

 b.setX(0.5);

 b.setY(6.0);

 b.setZ(2.0);

28

client changes the coordinates of
one of the points (without asking
the triangle for the point first)

29

64 client

a 250

b 350

c 450

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.5

y 6.0

z 2.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 250

Triangle Aggregation
 if a client gets a reference to one of the triangle's

points, then the client can change the position of the
point without asking the triangle

 run demo program in class here

30

31

 pointB = new Point(0.0, 1.0, -3.0);
 tri = new Triangle(new Point(-1.0, -1.0, -3.0),
 pointB,
 new Point(2.0, 0.0, -3.0));

 // Draw triangle
 gl.glBegin(GL2.GL_TRIANGLES);
 gl.glColor3f(0.0f, 1.0f, 1.0f); // set the color
 gl.glVertex3d(tri.getA().getX(),
 tri.getA().getY(),
 tri.getA().getZ());
 gl.glVertex3d(tri.getB().getX(),
 tri.getB().getY(),
 tri.getB().getZ());
 gl.glVertex3d(tri.getC().getX(),
 tri.getC().getY(),
 tri.getC().getZ());
 gl.glEnd();

 // the client moves a point without help from the triangle
 delta += 0.05f;
 pointB.setY(1.0 + Math.sin(delta));

client and triangle
share a reference to
pointB

draw the triangle
by asking tri for
the coordinates
of each of its points

client uses pointB
to change the point
coordinates

Composition

32

Composition
 recall that an object of type X that is composed of an

object of type Y means
 X has-a Y object and
 X owns the Y object

 in other words

33

the X object, and only the X object, is responsible for its Y object

Composition

 this means that the X object will generally not share
references to its Y object with clients
 constructors will create new Y objects
 accessors will return references to new Y objects
 mutators will store references to new Y objects

 the “new Y objects” are called defensive copies

34

the X object, and only the X object, is responsible for its Y object

Composition & the Default Constructor

 if a default constructor is defined it must create a
suitable Y object

 public X()

 {

 // create a suitable Y; for example

 this.y = new Y(/* suitable arguments */);

 }

35

the X object, and only the X object, is responsible for its Y object

defensive copy

Test Your Knowledge
1. Re-implement Triangle so that it is a composition of

3 points. Start by adding a default constructor to
Triangle that creates 3 new Point objects with
suitable values.

36

Composition & Copy Constructor

 if a copy constructor is defined it must create a new Y
that is a deep copy of the other X object’s Y object

 public X(X other)

 {

 // create a new Y that is a copy of other.y

 this.y = new Y(other.getY());

 }

37

the X object, and only the X object, is responsible for its Y object

defensive copy

Composition & Copy Constructor
 what happens if the X copy constructor does not make

a deep copy of the other X object’s Y object?

 // don’t do this

 public X(X other)

 {

 this.y = other.y;

 }

 every X object created with the copy constructor ends up
sharing its Y object
 if one X modifies its Y object, all X objects will end up with a

modified Y object
 this is called a privacy leak

38

Test Your Knowledge
1. Suppose Y is an immutable type. Does the X copy

constructor need to create a new Y? Why or why not?

2. Implement the Triangle copy constructor.

39

40

3. Suppose you have a Triangle copy constructor and
main method like so:

 public Triangle(Triangle t)

 { this.pA = t.pA; this.pB = t.pB; this.pC = t.pC; }

 public static void main(String[] args) {

 Triangle t1 = new Triangle();

 Triangle t2 = new Triangle(t1);

 t1.getA().set(-100.0, -100.0, 5.0);

 System.out.println(t2.getA());

 }

 What does the program print? How many Point
objects are there in memory? How many Point
objects should be in memory?

Composition & Other Constructors

 a constructor that has a Y parameter must first deep
copy and then validate the Y object

 public X(Y y)

 {

 // create a copy of y

 Y copyY = new Y(y);

 // validate; will throw an exception if copyY is invalid

 this.checkY(copyY);

 this.y = copyY;

 }

41

the X object, and only the X object, is responsible for its Y object

defensive copy

Composition and Other Constructors
 why is the deep copy required?

 if the constructor does this

 // don’t do this for composition

 public X(Y y) {
 this.y = y;
 }

 then the client and the X object will share the same Y object
 this is called a privacy leak

42

the X object, and only the X object, is responsible for its Y object

Test Your Knowledge
1. Suppose Y is an immutable type. Does the X

constructor need to copy the other X object’s Y
object? Why or why not?

2. Implement the following Triangle constructor:
 /**

 * Create a Triangle from 3 points

 * @param p1 The first point.

 * @param p2 The second point.

 * @param p3 The third point.

 * @throws IllegalArgumentException if the 3 points are

 * not unique

 */

43

Triangle has a class
invariant: the 3 points
of a Triangle are unique

Composition and Accessors

 never return a reference to an attribute; always return a
deep copy

 public Y getY()

 {

 return new Y(this.y);

 }

44

the X object, and only the X object, is responsible for its Y object

defensive copy

Composition and Accessors
 why is the deep copy required?

 if the accessor does this

 // don’t do this for composition

 public Y getY() {
 return this.y;
 }

 then the client and the X object will share the same Y object
 this is called a privacy leak

45

the X object, and only the X object, is responsible for its Y object

Test Your Knowledge
1. Suppose Y is an immutable type. Does the X accessor

need to copy it’s Y object before returning it? Why
or why not?

2. Implement the following 3 Triangle accessors:
 /**

 * Get the first/second/third point of the triangle.

 * @return The first/second/third point of the triangle

 */

46

Test Your Knowledge
3. Given your Triangle accessors from question 2,

can you write an improved Triangle copy
constructor that does not make copies of the point
attributes?

47

Composition and Mutators

 if X has a method that sets its Y object to a client-
provided Y object then the method must make a deep
copy of the client-provided Y object and validate it

 public void setY(Y y)

 {

 Y copyY = new Y(y);

 // validate; will throw an exception if copyY is invalid

 this.checkY(copyY);

 this.y = copyY;

 }

48

the X object, and only the X object, is responsible for its Y object

defensive copy

Composition and Mutators
 why is the deep copy required?

 if the mutator does this

 // don’t do this for composition

 public void setY(Y y) {
 this.y = y;
 }

 then the client and the X object will share the same Y object
 this is called a privacy leak

49

the X object, and only the X object, is responsible for its Y object

Test Your Knowledge
1. Suppose Y is an immutable type. Does the X mutator

need to copy the Y object? Why or why not? Does it
need to the validate the Y object?

2. Implement the following 3 Triangle mutators:
 /**

 * Set the first/second/third point of the triangle.

 * @param p The desired first/second/third point of

 * the triangle.

 * @return true if the point could be set;

 * false otherwise

 */

50

Triangle has a class
invariant: the 3 points
of a Triangle are unique

	A Singleton Puzzle: What is Printed?
	A Singleton Puzzle: Solution
	Slide Number 3
	Aggregation and Composition
	Aggregation and Composition
	Aggregation and Composition
	Aggregation
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	UML Class Diagram for Aggregation
	Another Aggregation Example
	Slide Number 15
	Slide Number 16
	Aggregation Example
	Triangle
	Triangle
	Triangle
	Triangle Aggregation
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Triangle Aggregation
	Slide Number 31
	Composition
	Composition
	Composition
	Composition & the Default Constructor
	Test Your Knowledge
	Composition & Copy Constructor
	Composition & Copy Constructor
	Test Your Knowledge
	Slide Number 40
	Composition & Other Constructors
	Composition and Other Constructors
	Test Your Knowledge
	Composition and Accessors
	Composition and Accessors
	Test Your Knowledge
	Test Your Knowledge
	Composition and Mutators
	Composition and Mutators
	Test Your Knowledge

