
A Singleton Puzzle: What is Printed? 
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public class Elvis { 

  public static final Elvis INSTANCE = new Elvis(); 

  private final int beltSize; 

  private static final int CURRENT_YEAR = 

    Calendar.getInstance().get(Calendar.YEAR); 
 

  private Elvis() { this.beltSize = CURRENT_YEAR – 1930; } 
 

  public int getBeltSize() { return this.beltSize; } 
 

  public static void main(String[] args) { 

    System.out.println("Elvis has a belt size of " + 

                        INSTANCE.getBeltSize()); 

  } 

} 
from Java Puzzlers by Joshua Bloch and Neal Gafter 



A Singleton Puzzle: Solution 
  Elvis has a belt size of -1930 is printed 
 to solve the puzzle you need to know how Java 

initializes classes (JLS 12.4) 
 the call to main() triggers initialization of the Elvis 

class (because main() belongs to the class Elvis) 
 the static attributes INSTANCE and CURRENT_YEAR are 

first given default values (null and 0, respectively) 
 then the attributes are initialized in order of 

appearance 
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1. public static final Elvis INSTANCE = new Elvis(); 

2. this.beltSize = CURRENT_YEAR – 1930; 

 

 

3. private static final int CURRENT_YEAR =  
           Calendar.getInstance().get(Calendar.YEAR); 

 

• the problem occurs because initializing INSTANCE 
requires a valid CURRENT_YEAR  

• solution: move CURRENT_YEAR before INSTANCE  
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CURRENT_YEAR == 0 
at this point 



Aggregation and Composition 

[notes Chapter 4] 
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Aggregation and Composition 
 

 
 the terms aggregation and composition are used to 

describe a relationship between objects 
 

 both terms describe the has-a relationship 
 the university has-a collection of departments 
 each department has-a collection of professors 
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Aggregation and Composition 
 
 

 composition implies ownership 
 if the university disappears then all of its departments disappear 
 a university is a composition of departments 

 
 aggregation does not imply ownership 

 if a department disappears then the professors do not disappear 
 a department is an aggregation of professors 
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Aggregation 
 suppose a Person has a name and a date of birth 

 
public class Person { 

  private String name; 

  private Date birthDate; 

 

  public Person(String name, Date birthDate) { 

    this.name = name;   

    this.birthDate = birthDate; 

  } 

 

  public Date getBirthDate() { 

    return birthDate; 

  } 

} 
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 the Person example uses aggregation 
 notice that the constructor does not make a copy of the 

name and birth date objects passed to it 
 the name and birth date objects are shared with the client 
 both the client and the Person instance are holding 

references to the same name and birth date 
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// client code somewhere 
String s = "Billy Bob"; 
Date d = new Date(91, 2, 26);  // March 26, 1991 
Person p = new Person(s, d); 
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64 client 

s 250 

d 350 

p 450 

... 

250 String object 

... 

... 

350 Date object 

... 

... 

450 Person object 

name 250 

birthDate 350 



 what happens when the client modifies the Date 
instance? 
 
 

 
 
 
 
 
 prints  Fri Nov 03 00:00:00 EST 1995  
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// client code somewhere 
String s = "Billy Bob"; 
Date d = new Date(90, 2, 26);  // March 26, 1990 
Person p = new Person(s, d); 
 
d.setYear(95);                 // November 3, 1995 
d.setMonth(10); 
d.setDate(3); 
System.out.println( p.getBirthDate() ); 



 
 

 because the Date instance is shared by the client and 
the Person instance: 
 the client can modify the date using d and the Person 

instance p sees a modified birthDate  
 the Person instance p can modify the date using birthDate 

and the client sees a modified date d  
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 note that even though the String instance is shared 
by the client and the Person instance p, neither the 
client nor p can modify the String  
 immutable objects make great building blocks for other 

objects 
 they can be shared freely without worrying about their state 
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UML Class Diagram for Aggregation 
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Person String Date 

1 1 

number of Date 
objects each Person has 

number of String 
objects each Person has 

open diamonds 
indicate aggregation 



Another Aggregation Example 
 3D videogames use models that are a three-

dimensional representations of geometric data 
 the models may be represented by: 

 three-dimensional points (particle systems) 
 simple polygons (triangles, quadrilaterals) 
 smooth, continuous surfaces (splines, parametric surfaces) 
 an algorithm (procedural models) 

 rendering the objects to the screen usually results in 
drawing triangles 
 graphics cards have specialized hardware that does this very 

fast 
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Aggregation Example 
 a Triangle has 3 three-dimensional Points  
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Triangle Point 
3 

Triangle 

+ Triangle(Point, Point, Point) 

+ getA() : Point 

+ getB() : Point 

+ getC() : Point 

+ setA(Point) : void 

+ setB(Point) : void 

+ setC(Point) : void 

Point 

+ Point(double, double, double) 

+ getX() : double 

+ getY() : double 

+ getZ() : double 

+ setX(double) : void 

+ setY(double) : void 

+ setZ(double) : void 



Triangle 
// attributes and constructor 

 

public class Triangle { 

 

  private Point pA; 

  private Point pB; 

  private Point pC; 

 

  public Triangle(Point c, Point b, Point c) { 

    this.pA = a; 

    this.pB = b; 

    this.pC = c; 

  } 
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Triangle 
  // accessors 

 

  public Point getA() { 

    return this.pA; 

  } 

 

  public Point getB() { 

    return this.pB; 

  } 

 

  public Point getC() { 

    return this.pC; 

  } 
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Triangle 
  // mutators 

 

  public void setA(Point p) { 

    this.pA = p; 

  } 

 

  public void setB(Point p) { 

    this.pB = p; 

  } 

 

  public void setC(Point p) { 

    this.pC = p; 

  } 

} 
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Triangle Aggregation 
 implementing Triangle is very easy 
 attributes (3 Point references) 
 are references to existing objects provided by the client 

 accessors 
 give clients a reference to the aggregated Points  

 mutators 
 set attributes to existing Points provided by the client 

 
 we say that the Triangle attributes are aliases   
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  // client code 

 

  Point a = new Point(-1.0, -1.0, -3.0); 

  Point b = new Point(0.0, 1.0, -3.0); 

  Point c = new Point(2.0, 0.0, -3.0); 

  Triangle tri = new Triangle(a, b, c); 
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64 client 

a 250 

b 350 

c 450 

tri 550 

250 Point object 

x -1.0 

y -1.0 

z -3.0 

350 Point object 

x 0.0 

y 1.0 

z -3.0 

450 Point object 

x 2.0 

y 0.0 

z -3.0 

550 Triangle object 

pA 250 

pB 350 

pC 450 



  // client code 

 

  Point a = new Point(-1.0, -1.0, -3.0); 

  Point b = new Point(0.0, 1.0, -3.0); 

  Point c = new Point(2.0, 0.0, -3.0); 

  Triangle tri = new Triangle(a, b, c); 

  Point d = tri.getA(); 

  boolean sameObj = a == d; 
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client asks the triangle for one 
of the triangle points and checks 
if the point is the same object 
that was used to create the triangle 



25 

64 client 

a 250 

b 350 

c 450 

tri 550 

d 250 

sameObj true 

250 Point object 

x -1.0 

y -1.0 

z -3.0 

350 Point object 

x 0.0 

y 1.0 

z -3.0 

450 Point object 

x 2.0 

y 0.0 

z -3.0 

550 Triangle object 

pA 250 

pB 350 

pC 450 



  // client code 

 

  Point a = new Point(-1.0, -1.0, -3.0); 

  Point b = new Point(0.0, 1.0, -3.0); 

  Point c = new Point(2.0, 0.0, -3.0); 

  Triangle tri = new Triangle(a, b, c); 

  Point d = tri.getA(); 

  boolean sameObj = a == d; 

  tri.setC(d); 
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client asks the triangle to set 
one point of the triangle to d  
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64 client 

a 250 

b 350 

c 450 

tri 550 

d 250 

sameObj true 

250 Point object 

x -1.0 

y -1.0 

z -3.0 

350 Point object 

x 0.0 

y 1.0 

z -3.0 

450 Point object 

x 2.0 

y 0.0 

z -3.0 

550 Triangle object 

pA 250 

pB 350 

pC 250 



  // client code 

 

  Point a = new Point(-1.0, -1.0, -3.0); 

  Point b = new Point(0.0, 1.0, -3.0); 

  Point c = new Point(2.0, 0.0, -3.0); 

  Triangle tri = new Triangle(a, b, c); 

  Point d = tri.getA(); 

  boolean sameObj = a == d; 

  tri.setC(d); 

  b.setX(0.5); 

  b.setY(6.0); 

  b.setZ(2.0); 
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client changes the coordinates of 
one of the points (without asking 
the triangle for the point first) 
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64 client 

a 250 

b 350 

c 450 

tri 550 

d 250 

sameObj true 

250 Point object 

x -1.0 

y -1.0 

z -3.0 

350 Point object 

x 0.5 

y 6.0 

z 2.0 

450 Point object 

x 2.0 

y 0.0 

z -3.0 

550 Triangle object 

pA 250 

pB 350 

pC 250 



Triangle Aggregation 
 if a client gets a reference to one of the triangle's 

points, then the client can change the position of the 
point without asking the triangle   
 

 run demo program in class here 
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    pointB = new Point(0.0, 1.0, -3.0); 
    tri = new Triangle(new Point(-1.0, -1.0, -3.0), 
                       pointB, 
                       new Point(2.0, 0.0, -3.0)); 
 
    // Draw triangle 
    gl.glBegin(GL2.GL_TRIANGLES); 
    gl.glColor3f(0.0f, 1.0f, 1.0f); // set the color 
    gl.glVertex3d(tri.getA().getX(), 
                  tri.getA().getY(), 
                  tri.getA().getZ()); 
    gl.glVertex3d(tri.getB().getX(), 
                  tri.getB().getY(), 
                  tri.getB().getZ()); 
    gl.glVertex3d(tri.getC().getX(), 
                  tri.getC().getY(), 
                  tri.getC().getZ()); 
    gl.glEnd(); 
 
    // the client moves a point without help from the triangle 
    delta += 0.05f; 
    pointB.setY(1.0 + Math.sin(delta)); 

client and triangle 
share a reference to 
pointB  

draw the triangle 
by asking tri for 
the coordinates 
of each of its points 

client uses pointB  
to change the point 
coordinates 



Composition 
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Composition 
 recall that an object of type X that is composed of an 

object of type Y means 
 X has-a Y object and 
 X owns the Y object 

 in other words 
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the X object, and only the X object, is responsible for its Y object 



Composition 
 
 
 

 this means that the X object will generally not share 
references to its Y object with clients 
 constructors will create new Y objects  
 accessors will return references to new Y objects  
 mutators will store references to new Y objects  

 
 the “new Y objects” are called defensive copies  
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the X object, and only the X object, is responsible for its Y object 



Composition & the Default Constructor 
 
 

 if a default constructor is defined it must create a 
suitable Y object 
 

 public X()  

 { 

    // create a suitable Y; for example 

   this.y = new Y( /* suitable arguments */ ); 

  } 
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the X object, and only the X object, is responsible for its Y object 

defensive copy 



Test Your Knowledge 
1. Re-implement Triangle so that it is a composition of 

3 points. Start by adding a default constructor to 
Triangle that creates 3 new Point objects with 
suitable values. 
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Composition & Copy Constructor 
 
 
 

 if a copy constructor is defined it must create a new Y 
that is a deep copy of the other X object’s Y object 
 

 public X(X other)  

 { 

    // create a new Y that is a copy of other.y 

   this.y = new Y(other.getY()); 

 } 

37 

the X object, and only the X object, is responsible for its Y object 

defensive copy 



Composition & Copy Constructor 
 what happens if the X copy constructor does not make 

a deep copy of the other X object’s Y object? 
 

 // don’t do this 

 public X(X other) 

 { 

   this.y = other.y; 

 } 
 

 every X object created with the copy constructor ends up 
sharing its Y object 
 if one X modifies its Y object, all X objects will end up with a 

modified Y object 
 this is called a privacy leak 
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Test Your Knowledge 
1. Suppose Y is an immutable type. Does the X copy 

constructor need to create a new Y? Why or why not? 
 

2. Implement the Triangle copy constructor. 
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3. Suppose you have a Triangle copy constructor and 
main method like so: 
 

  public Triangle(Triangle t) 

 {  this.pA = t.pA;  this.pB = t.pB;  this.pC = t.pC; } 

 

 public static void main(String[] args) { 

   Triangle t1 = new Triangle(); 

   Triangle t2 = new Triangle(t1); 

   t1.getA().set( -100.0, -100.0, 5.0 ); 

   System.out.println( t2.getA() ); 

 } 

 What does the program print? How many Point 
objects are there in memory? How many Point 
objects should be in memory?  



Composition & Other Constructors 
 
 

 a constructor that has a Y parameter must first deep 
copy and then validate the Y object 
 

 public X(Y y)  

 { 

    // create a copy of y 

   Y copyY = new Y(y); 

   // validate; will throw an exception if copyY is invalid 

   this.checkY(copyY); 

    this.y = copyY;  

  } 

41 

the X object, and only the X object, is responsible for its Y object 

defensive copy 



Composition and Other Constructors 
 why is the deep copy required? 

 
 
 if the constructor does this 

 

 // don’t do this for composition 

 public X(Y y) { 
   this.y = y; 
  } 
 

 then the client and the X object will share the same Y object 
 this is called a privacy leak 
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the X object, and only the X object, is responsible for its Y object 



Test Your Knowledge 
1. Suppose Y is an immutable type. Does the X 

constructor need to copy the other X object’s Y 
object? Why or why not? 
 

2. Implement the following Triangle constructor: 
 /** 

  * Create a Triangle from 3 points 

  * @param p1 The first point. 

  * @param p2 The second point. 

  * @param p3 The third point. 

  * @throws IllegalArgumentException if the 3 points are 

  *         not unique 

  */ 
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Triangle has a class 
invariant: the 3 points 
of a Triangle are unique 



Composition and Accessors 
 
 

 never return a reference to an attribute; always return a 
deep copy 
 

 public Y getY() 

 { 

   return new Y(this.y); 

 } 
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the X object, and only the X object, is responsible for its Y object 

defensive copy 



Composition and Accessors 
 why is the deep copy required? 

 
 
 if the accessor does this 

 

 // don’t do this for composition 

 public Y getY() { 
   return this.y; 
  } 
 

 then the client and the X object will share the same Y object 
 this is called a privacy leak 
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the X object, and only the X object, is responsible for its Y object 



Test Your Knowledge 
1. Suppose Y is an immutable type. Does the X accessor 

need to copy it’s Y object before returning it? Why 
or why not? 
 

2. Implement the following 3 Triangle accessors: 
 /** 

  * Get the first/second/third point of the triangle. 

  * @return The first/second/third point of the triangle 

  */ 
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Test Your Knowledge 
3. Given your Triangle accessors from question 2, 

can you write an improved Triangle copy 
constructor that does not make copies of the point 
attributes? 
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Composition and Mutators 
 
 

 if X has a method that sets its Y object to a client-
provided Y object then the method must make a deep 
copy of the client-provided Y object and validate it 
 

 public void setY(Y y)  

 { 

   Y copyY = new Y(y); 

    // validate; will throw an exception if copyY is invalid 

   this.checkY(copyY); 

   this.y = copyY; 

  } 
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the X object, and only the X object, is responsible for its Y object 

defensive copy 



Composition and Mutators 
 why is the deep copy required? 

 
 
 if the mutator does this 

 

 // don’t do this for composition 

 public void setY(Y y) { 
   this.y = y; 
  } 
 

 then the client and the X object will share the same Y object 
 this is called a privacy leak 
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the X object, and only the X object, is responsible for its Y object 



Test Your Knowledge 
1. Suppose Y is an immutable type. Does the X mutator 

need to copy the Y object? Why or why not? Does it 
need to the validate the Y object? 
 

2. Implement the following 3 Triangle mutators: 
 /** 

  * Set the first/second/third point of the triangle. 

  * @param p The desired first/second/third point of 

  *          the triangle. 

  * @return true if the point could be set; 

  *         false otherwise 

  */ 
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Triangle has a class 
invariant: the 3 points 
of a Triangle are unique 
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