
hashCode and compareTo

1

hashCode()

2

 if you override equals() you must override
hashCode()
 otherwise, the hashed containers won't work properly

 recall that we did not override hashCode() for PhoneNumber

// client code somewhere
PhoneNumber pizza = new PhoneNumber(416, 967, 1111);

HashSet<PhoneNumber> h = new HashSet<PhoneNumber>();
h.add(pizza);
System.out.println(h.contains(pizza)); // true

PhoneNumber pizzapizza =
 new PhoneNumber(416, 967, 1111);
System.out.println(h.contains(pizzapizza)); // false

[notes 2.3.5]

Arrays as Containers

3

 suppose you have an array of unique PhoneNumbers
 how do you compute whether or not the array contains a

particular PhoneNumber?
public static boolean
 hasPhoneNumber(PhoneNumber p,
 PhoneNumber[] numbers)
{
 if (numbers != null) {
 for(PhoneNumber num : numbers) {
 if (num.equals(p)) {
 return true;
 }
 }
 }
 return false;
}

4

 called linear search or sequential search
 doubling the length of the array doubles the amount of

searching we need to do
 if there are n PhoneNumbers in the array:
 best case

 the first PhoneNumber is the one we are searching for
 1 call to equals()

 worst case
 the PhoneNumber is not in the array
 n calls to equals()

 average case
 the PhoneNumber is somewhere in the middle of the array
 approximately (n/2) calls to equals()

Hash Tables

5

 you can think of a hash table as being an array of
buckets where each bucket holds the stored objects

0 1 2 3 ... N

Insertion into a Hash Table

6

 to insert an object a, the hash table calls
a.hashCode() method to compute which bucket to
put the object into

0 1 2 3 ... N

a.hashCode() 2 a

b.hashCode() 0 b

c.hashCode() N c
d.hashCode() N d

means the hash table takes the hash code and does something to
it to make it fit in the range 0—N

Insertion into a Hash Table

7

 to insert an object a, the hash table calls
a.hashCode() method to compute which bucket to
put the object into

b a c
d

0 1 2 3 ... N

Search on a Hash Table

8

 to see if a hash table contains an object a, the hash
table calls a.hashCode() method to compute which
bucket to look for a in

b

a

c
d

0 1 2 3 ... N

a.hashCode() 2
z.hashCode() N

a.equals()

true

z.equals()

false
z.equals()

false

Search on a Hash Table

9

 to see if a hash table contains an object a, the hash
table calls a.hashCode() method to compute which
bucket to look for a in

b

a

c
d

0 1 2 3 ... N

a.hashCode() 2
z.hashCode() N

a.equals()

true

z.equals()

false
z.equals()

false

10

 searching a hash table is usually much faster than
linear search
 doubling the number of elements in the hash table usually

does not noticably increase the amount of search needed
 if there are n PhoneNumbers in the hash table:
 best case

 the bucket is empty, or the first PhoneNumber in the bucket is
the one we are searching for
 0 or 1 call to equals()

 worst case
 all n of the PhoneNumbers are in the same bucket
 n calls to equals()

 average case
 the PhoneNumber is in a bucket with a small number of other
PhoneNumbers
 a small number of calls to equals()

Object hashCode()

11

 if you don't override hashCode(), you get the
implementation from Object.hashCode()
 Object.hashCode() uses the memory address of the object

to compute the hash code

12

 note that pizza and pizzapizza are distinct objects
 therefore, their memory locations must be different

 therefore, their hash codes are different (probably)
 therefore, the hash table looks in the wrong bucket (probably)

and does not find the phone number even though
pizzapizza.equals(pizza) *

// client code somewhere
PhoneNumber pizza = new PhoneNumber(416, 967, 1111);

HashSet<PhoneNumber> h = new HashSet<PhoneNumber>();
h.add(pizza);

PhoneNumber pizzapizza = new PhoneNumber(416, 967, 1111);
System.out.println(h.contains(pizzapizza)); // false

* unless you're from Naples

A Bad (but legal) hashCode()

13

public final class PhoneNumber {

 // attributes, constructors, methods ...

 @Override public int hashCode()

 {

 return 1; // or any other constant int

 }

}

 this will cause a hashed container to put all
PhoneNumbers in the same bucket

A Slightly Better hashCode()

14

public final class PhoneNumber {

 // attributes, constructors, methods ...

 @Override public int hashCode()

 {

 return (int)(this.getAreaCode() +

 this.getExchangeCode() +

 this.getStationCode());

 }

}

15

 the basic idea is generate a hash code using the
attributes of the object

 it would be nice if two distinct objects had two distinct
hash codes
 but this is not required; two different objects can have the

same hash code
 it is required that:

1. if x.equals(y) then x.hashCode() == y.hashCode()
2. x.hashCode() always returns the same value if x does not

change its state

Something to Think About

16

 what do you need to be careful of when putting a
mutable object into a HashSet?
 can you avoid the problem by using immutable objects?

compareTo

17

Comparable Objects

18

 many value types have a natural ordering
 that is, for two objects x and y, x is less than y is

meaningful
 Short, Integer, Float, Double, etc
 Strings can be compared in dictionary order
 Dates can be compared in chronological order
 you might compare Vector2Ds by their length
 Dies can be compared by their face value

 if your class has a natural ordering, consider
implementing the Comparable interface
 doing so allows clients to sort arrays or Collections of your

object

Interfaces

19

 an interface is (usually) a group of related methods
with empty bodies
 the Comparable interface has just one method

public interface Comparable<T>
{

 int compareTo(T t);
}

 a class that implements an interfaces promises to
provide an implementation for every method in the
interface

compareTo()

20

 Compares this object with the specified object for
order. Returns a negative integer, zero, or a positive
integer as this object is less than, equal to, or greater
than the specified object.

 Throws a ClassCastException if the specified object
type cannot be compared to this object.

Die compareTo()

21

public class Die implements Comparable<Die> {

 // attributes, constructors, methods ...

 public int compareTo(Die other) {

 int result = 0;

 if (this.getValue() < other.getValue()) {

 result = -1;

 }

 else if (this.getValue() > other.getValue()) {

 result = 1;

 }

 return result;

 }

}

Die compareTo()

22

 the following also works for the Die class, but is
dangerous in general:

 public int compareTo(Die other) {

 int result = this.getValue() – other.getValue();

 return result;

 }

Comparable Contract

23

1. the sign of the returned int must flip if the order of
the two compared objects flip

 if x.compareTo(y) > 0 then y.compareTo(x) < 0

 if x.compareTo(y) < 0 then y.compareTo(x) > 0

 if x.compareTo(y) == 0 then y.compareTo(x) == 0

Comparable Contract

24

2. compareTo() must be transitive
 if x.compareTo(y) > 0 && y.compareTo(z) > 0 then

x.compareTo(z) > 0

 if x.compareTo(y) < 0 && y.compareTo(z) < 0 then
x.compareTo(z) < 0

 if x.compareTo(y) == 0 && y.compareTo(z) == 0 then
x.compareTo(z) == 0

Comparable Contract

25

3. if x.compareTo(y) == 0 then the signs of
x.compareTo(z) and y.compareTo(z) must be
the same

Consistency with equals

26

 an implementation of compareTo() is said to be
consistent with equals() when

 if x.compareTo(y) == 0 then
 x.equals(y) == true

 and
 if x.equals(y) == true then
 x.compareTo(y) == 0

Not in the Comparable Contract

27

 it is not required that compareTo() be consistent with
equals()
 that is
 if x.compareTo(y) == 0 then
 x.equals(y) == false is acceptable
 similarly
 if x.equals(y) == true then
 x.compareTo(y) != 0 is acceptable

 try to come up with examples for both cases above

Implementing compareTo
 implementing compareTo is similar to implementing

equals
 you need to compare all of the fields
 starting with the field that is most significant for ordering

purposes and working your way down

28

PhoneNumber compareTo()

29

public class PhoneNumber implements Comparable<PhoneNumber> {
 // attributes, constructors, methods ...

 public int compareTo(PhoneNumber other) {
 int result = 0;
 result = this.getAreaCode() – other.getAreaCode();
 if (result == 0) {
 result = this.getExchangeCode() – other.getExchangeCode();
 }
 if (result == 0) {
 result = this.getStationCode() – other.getStationCode();
 }
 return result;
 }
}

Implementing compareTo
 if you are comparing fields of type float or double

you should use Float.compare or
Double.compare instead of <, >, or ==

 if your compareTo implementation is broken, then
any classes or methods that rely on compareTo will
behave erratically
 TreeSet, TreeMap
 many methods in the utility classes Collections and
Arrays

30

Mixing Static and Non-Static

31

static Fields

32

 a field that is static is a per-class member
 only one copy of the field, and the field is associated with

the class
 every object created from a class declaring a static field shares the

same copy of the field

 static fields are used when you really want only one
common instance of the field for the class
 less common than non-static fields

Example

33

 a textbook example of a static field is a counter that
counts the number of created instances of your class

// adapted from Sun's Java Tutorial
public class Bicycle {
 // some other fields here...
 private static int numberOfBicycles = 0;

 public Bicycle() {
 // set some attributes here...
 Bicycle.numberOfBicycles++;
 }

 public static int getNumberOfBicyclesCreated() {
 return Bicycle.numberOfBicycles;
 }
}

note:
not this.numberOfBicycles++

[notes 3.2]

34

 another common example is to count the number of
times a method has been called
public class X {

 private static int numTimesXCalled = 0;
 private static int numTimesYCalled = 0;

 public void xMethod() {
 // do something... and then update counter
 ++X.numTimesXCalled;
 }

 public void yMethod() {
 // do something... and then update counter
 ++X.numTimesYCalled;
 }
}

Mixing Static and Non-static Fields

35

 a class can declare static (per class) and non-static (per
instance) fields

 a common textbook example is giving each instance a
unique serial number
 the serial number belongs to the instance

 therefore it must be a non-static field

public class Bicycle {
 // some attributes here...
 private static int numberOfBicycles = 0;

 private int serialNumber;

 // ...

36

 how do you assign each instance a unique serial
number?
 the instance cannot give itself a unique serial number

because it would need to know all the currently used serial
numbers

 could require that the client provide a serial number
using the constructor
 instance has no guarantee that the client has provided a

valid (unique) serial number

37

 the class can provide unique serial numbers using
static fields
 e.g. using the number of instances created as a serial

number
public class Bicycle {
 // some attributes here...

 private static int numberOfBicycles = 0;
 private int serialNumber;

 public Bicycle() {
 // set some attributes here...
 this.serialNumber = Bicycle.numberOfBicycles;
 Bicycle.numberOfBicycles++;
 }
}

38

 a more sophisticated implementation might use an
object to generate serial numbers
public class Bicycle {

 // some attributes here...
 private static int numberOfBicycles = 0;

 private static final
 SerialGenerator serialSource = new SerialGenerator();

 private int serialNumber;

 public Bicycle() {
 // set some attributes here...
 this.serialNumber = Bicycle.serialSource.getNext();
 Bicycle.numberOfBicycles++;
 }
}

Static Methods

39

 recall that a static method is a per-class method
 client does not need an object to invoke the method
 client uses the class name to access the method

 a static method can only use static fields of the
class
 static methods have no this parameter because a static

method can be invoked without an object
 without a this parameter, there is no way to access non-

static fields
 non-static methods can use all of the fields of a class

(including static ones)

40

public class Bicycle {
 // some attributes, constructors, methods here...

 public static int getNumberCreated()
 {
 return Bicycle.numberOfBicycles;
 }

 public int getSerialNumber()
 {
 return this.serialNumber;
 }

 public void setNewSerialNumber()
 {
 this.serialNumber = Bicycle.serialSource.getNext();
 }
}

static method
can only use

static attributes

non-static method
can use

non-static attributes

and static attributes

	hashCode and compareTo
	hashCode()
	Arrays as Containers
	Slide Number 4
	Hash Tables
	Insertion into a Hash Table
	Insertion into a Hash Table
	Search on a Hash Table
	Search on a Hash Table
	Slide Number 10
	Object hashCode()
	Slide Number 12
	A Bad (but legal) hashCode()
	A Slightly Better hashCode()
	Slide Number 15
	Something to Think About
	compareTo
	Comparable Objects
	Interfaces
	compareTo()
	Die compareTo()
	Die compareTo()
	Comparable Contract
	Comparable Contract
	Comparable Contract
	Consistency with equals
	Not in the Comparable Contract
	Implementing compareTo
	PhoneNumber compareTo()
	Implementing compareTo
	Mixing Static and Non-Static
	static Fields
	Example
	Slide Number 34
	Mixing Static and Non-static Fields
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Static Methods
	Slide Number 40

