
Classes (Part 2)

Implementing non-static features

1

Goals
 finish implementing the immutable class
PhoneNumber
 equals()

 implement a mutable class

2

Overriding equals()

3

 suppose you write a value class that extends Object
but you do not override equals()
 what happens when a client tries to use equals()?

 Object.equals() is called

// PhoneNumber client

PhoneNumber cse = new PhoneNumber(416, 736, 5053);
System.out.println(cse.equals(cse)); // true

PhoneNumber cseToo = cse;
System.out.println(cseToo.equals(cse)); // true

PhoneNumber cseAlso = new PhoneNumber(416, 736, 5053);
System.out.println(cseAlso.equals(cse)); // false!

 [notes 2.2.4]

4

64 client
cse

cseToo

cseAlso

600 PhoneNumber
object

areaCode 416

exchangeCode 736

stationCode 5053

700 PhoneNumber
object

areaCode 416

exchangeCode 736

stationCode 5053

600

600

700

Object.equals()

5

 Object.equals() checks if two references refer to
the same object
 x.equals(y) is true if and only if x and y are references to

the same object

PhoneNumber.equals()

6

 most value classes should support logical equality
 an instance is equal to another instance if their states are

equal
 e.g. two PhoneNumbers are equal if their area, exchange, and

station codes have the same values

7

 implementing equals() is surprisingly hard
 "One would expect that overriding equals(), since it is a

fairly common task, should be a piece of cake. The reality is far
from that. There is an amazing amount of disagreement in the
Java community regarding correct implementation of
equals(). Look into the best Java source code or open an
arbitrary Java textbook and take a look at what you find.
Chances are good that you will find several different
approaches and a variety of recommendations."

 Angelika Langer, Secrets of equals() – Part 1
 http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html

8

 what we are about to do does not always produce the
result you might be looking for

 but it is always satisfies the equals() contract
 and it's what the notes and textbook do

CSE1030 Requirements for equals
1. an instance is equal to itself
2. an instance is never equal to null
3. only instances of the exact same type can be equal
4. instances with the same state are equal

9

1. An Instance is Equal to Itself

10

 x.equals(x) should always be true
 also, x.equals(y) should always be true if x and y

are references to the same object
 you can check if two references are equal using ==

11

 @Override

 public boolean equals(Object obj) {

 if (this == obj) {

 return true;

 }

 }

2. An Instance is Never Equal to null

12

 Java requires that x.equals(null) returns false
 and you must not throw an exception if the argument

is null
 so it looks like we have to check for a null argument...

13

 @Override

 public boolean equals(Object obj) {

 if (this == obj) {

 return true;

 }

 if (obj == null) {

 return false;

 }

 }

3. Instances of the Same Type can be Equal

14

 the implementation of equals() used in the notes
and the textbook is based on the rule that an instance
can only be equal to another instance of the same type

 you can find the class of an object using
Object.getClass()

public final Class<? extends Object> getClass()

 Returns the runtime class of an object.

15

 @Override

 public boolean equals(Object obj) {

 if (this == obj) {

 return true;

 }

 if (obj == null) {

 return false;

 }

 if (this.getClass() != obj.getClass()) {

 return false;

 }

 }

Instances with Same State are Equal

16

 recall that the value of the attributes of an object
define the state of the object
 two instances are equal if all of their attributes are equal

 unfortunately, we cannot yet retrieve the attributes of
the parameter obj because it is declared to be an
Object in the method signature
 we need a cast

17

 @Override

 public boolean equals(Object obj) {

 if (this == obj) {

 return true;

 }

 if (obj == null) {

 return false;

 }

 if (this.getClass() != obj.getClass()) {

 return false;

 }

 PhoneNumber other = (PhoneNumber) obj;

 }

Instances with Same State are Equal

18

 there is a recipe for checking equality of fields

1. if the field is a primitive type other than float or

double use ==
2. if the attribute type is float use Float.compare()
3. if the attribute type is double use Double.compare()
4. if the attribute is an array consider Arrays.equals()
5. if the attribute is a reference type use equals(), but

beware of attributes that might be null

19

 @Override
 public boolean equals(Object obj) {
 if (this == obj) {
 return true;
 }
 if (obj == null) {
 return false;
 }
 if (this.getClass() != obj.getClass()) {
 return false;
 }
 PhoneNumber other = (PhoneNumber) obj;
 if (areaCode != other.areaCode) {
 return false;
 }
 if (exchangeCode != other.exchangeCode) {
 return false;
 }
 if (stationCode != other.stationCode) {
 return false;
 }
 return true;
 }

The equals() Contract

20

 for reference values equals() is
1. reflexive
2. symmetric
3. transitive
4. consistent
5. must not throw an exception when passed null

The equals() contract: Reflexivity

21

1. reflexive :
 an object is equal to itself
 x.equals(x) is true

The equals() contract: Symmetry

22

2. symmetric :
 two objects must agree on whether they are equal
 x.equals(y) is true if and only if y.equals(x) is

true

The equals() contract: Transitivity

23

3. transitive :
 if a first object is equal to a second, and the second object

is equal to a third, then the first object must be equal to
the third

 if x.equals(y) is true, and y.equals(z) is true,
then x.equals(z) must be true

The equals() contract: Consistency

24

4. consistent :
 repeatedly comparing two objects yields the same result

(assuming the state of the objects does not change)

The equals() contract: Non-nullity

25

5. x.equals(null) is always false and never does
not throw an exception

The equals() contract and getClass()

 using getClass() makes it relatively easy to ensure
that the equals() contract is obeyed
 e.g., symmetry and transitivity are easy to ensure

 however, using getClass() means that your
equals() method won't work as expected in
inheritance hierarchies
 more on this when we talk about inheritance

26

One more thing regarding equals()
 if you override equals() you must override
hashCode()
 otherwise, the hashed containers won't work properly

 we will see how to implement hashCode()in the
next lecture or so
 also a discussion about how the hashed containers actually

work

27

Mutable Classes

28

Mutable Classes

29

 a mutable class can change how its state appears to
clients
 recall that immutable classes are generally easier to

implement and use
 so why would we want a mutable class?

 because you need a separate immutable object for every value you
need to represent
 example is String concatenation

Reading a Text File into a String

30

BufferedReader in =

 new BufferedReader(new FileReader(file));

String contents = "";

while (in.ready()) {

 contents = contents + in.readLine();

}

creates a new String object
to perform the concatenation
each iteration of the loop

Reading a Text File into a StringBuilder

31

BufferedReader in =

 new BufferedReader(new FileReader(file));

StringBuilder contents = new StringBuilder();

while (in.ready()) {

 contents.append(in.readLine());

}

new String not created
for each iteration

Example Mutable class

 we will create a class to represent 2-dimensional
vectors

32

What Can Mathematical Vectors Do?

33

 add
 subtract
 multiply by scalar
 set coordinates
 get coordinates
 construct
 equals
 toString

Vector2D

- x: double

- y: double

- name: String

+ Vector2D()

+ Vector2D(double, double)

+ Vector2D(String, double, double)

+ Vector2D(Vector2D)

+ add(Vector2D): void

+ equals(Object): boolean

+ getX(): double

+ getY(): double

+ length(): double

+ multiply(double): void

...

Constructors
 recall that the role of the constructor is to initialize the

attributes of a new object
 for Vector2D we need to initialize x, y, and name

 we have 4 overloaded constructors

34

Vector2D()
Create the vector (0, 0) with no name.

Vector2D(double x, double y)
Create the vector (x, y) with no name.

Vector2D(String name, double x, double y)
Create the vector (x, y) with the given name.

Vector2D(Vector2D other)
Create a new vector that is equal to the given vector.

Constructors

35

public Vector2D() {

 this.x = 0;

 this.y = 0;

 this.name = null;

}

public Vector2D(double x, double y) {

 this.x = x;

 this.y = y;

 this.name = null;

}

Constructors

36

public Vector2D(String name, double x, double y) {

 this.x = x;

 this.y = y;

 this.name = name;

}

public Vector2D(Vector2D other) {

 this.x = other.x;

 this.y = other.y;

 this.name = other.name;

}

Avoiding Code Duplication
 notice that the constructor bodies are almost identical

to each other
 whenever you see duplicated code you should consider

moving the duplicated code into a method
 in this case, one of the constructors already does

everything we need to implement the other
constructors…

37

Constructors

38

public Vector2D(double x, double y, String name) {

 this.x = x;

 this.y = y;

 this.name = name;

}

public Vector2D() {

 this(0, 0, null);

}

public Vector2D(double x, double y) {

 this(x, y, null);

}

public Vector2D(Vector2D other) {

 this(other.x, other.y, other.name);

}

invokes

invokes

invokes

Constructor Chaining
 when a constructor invokes another constructor it is

called constructor chaining
 to invoke a constructor in the same class you use the
this keyword
 if you do this then it must occur on the first line of the

constructor body

39

Accessor Methods
 recall that accessor methods return information about

the state of the object
 for Vector2D we need to return information about x, y,

and name

 we have 3 accessor methods

40

double getX()
Get the x coordinate of the vector.

double getY()
Get the y coordinate of the vector.

String getName()
Get the name of the vector.

Accessor Methods

41

public double getX() {

 return this.x;

}

public double getY() {

 return this.y;

}

public double getName() {

 return this.name;

}

Mutator Methods

 recall that mutator methods allow a client to
manipulate the state of the object
 for Vector2D we need to allow the client to manipulate x,
y, and name

42

Mutator Methods
 we have 5 mutator methods

43

void setX(double x)
Set the x coordinate of the vector.

void setY(double y)
Set the y coordinate of the vector.

void setName(String name)
Set the name of the vector.

void set(double x, double y)
Set the x and y coordinate of the vector

void set(String name, double x, double y)
Set the name, x, and y coordinate of the vector

setX(), setY(), and set()

44

public void setX(double x) {
 this.x = x;
}

public void setY(double y) {
 this.y = y;
}

public void setName(String name) {
 this.name = name;
}

public void set(double x, double y) {
 this.setX(x);
 this.setY(y);
}

public void set(String name, double x, double y) {
 this.setName(name);
 this.set(x, y);
}

Equals
 recall that most value type classes will want their own

version of equals
 we shall say that two vectors are equal if their x, and y

coordinates are equal
 i.e., two vectors might be equal even if their names are different

45

boolean equals(Object obj)
Compares two vectors for equality.

equals()

46

@Override public boolean equals(Object obj)

{

 boolean eq = false;

 if (obj == this) {

 eq = true;

 }

 return eq;

}

47

@Override public boolean equals(Object obj)

{

 boolean eq = false;

 if (obj == this) {

 eq = true;

 }

 else if (obj != null && this.getClass() == obj.getClass()) {

 }

 return eq;

}

48

@Override public boolean equals(Object obj)

{

 boolean eq = false;

 if (obj == this) {

 eq = true;

 }

 else if (obj != null && this.getClass() == obj.getClass()) {

 Vector2d other = (Vector2d) obj;

 }

 return eq;

}

49

@Override public boolean equals(Object obj)

{

 boolean eq = false;

 if (obj == this) {

 eq = true;

 }

 else if (obj != null && this.getClass() == obj.getClass()) {

 Vector2d other = (Vector2d) obj;

 eq = this.getX() == other.getX() &&

 this.getY() == other.getY();

 }

 return eq;

}

This version works most of the time (except when it doesn’t!)

50

@Override public boolean equals(Object obj)

{

 boolean eq = false;

 if (obj == this) {

 eq = true;

 }

 else if (obj != null && this.getClass() == obj.getClass()) {

 Vector2d other = (Vector2d) obj;

 eq = Double.compare(this.getX(), other.getX()) == 0 &&

 Double.compare(this.getY(), other.getY()) == 0;

 }

 return eq;

}

This version always works.

== vs Double.compare
 the issue here is quite subtle
 if you use == to compare the coordinates then

Vector2D u = new Vector2D(0.0 / 0.0, 1.0); // (NaN, 1.0)

Vector2D v = new Vector2D(u); // (NaN, 1.0)

boolean eq = u.equals(v);

eq will be false because NaN == NaN is always false
 NaN means “not a number” and is used to represent a

mathematically undefined number
 such as occurs when you divide zero by zero
 the behavior of NaN is defined in the IEEE 754 standard for

floating point arithmetic (i.e., this is not just a Java issue)

51

== vs Double.compare
 if you use == to compare the coordinates then all hash

based collections and all sets will behave strangely
with vectors having NaN as a component

Set<Vector2D> set = new HashSet<Vector2D>();

Vector2D u = new Vector2D(0.0 / 0.0, 1.0); // (NaN, 1.0)

Vector2D v = new Vector2D(u); // (NaN, 1.0)

set.add(u);

set.add(v);

System.out.println(set.size()); // prints 2

 sets are supposed to reject duplicate elements but
there are 2 identical vectors in set
 occurs because Set uses equals to check for duplicates

52

== vs Double.compare
 if you use Double.compare to compare the

coordinates then

Vector2D u = new Vector2D(0.0 / 0.0, 1.0); // (NaN, 1.0)

Vector2D v = new Vector2D(u); // (NaN, 1.0)

boolean eq = u.equals(v);

eq will be true because Double.compare is
implemented to allow for equality of NaN
 checking for equality of NaN can be useful when trying

to track down errors in computations
 also the hash based collections and sets will work as

expected

53

== vs Double.compare
 there is a side effect of using Double.compare to

compare the coordinates

Vector2D u = new Vector2D(0.0, 1.0); // (0.0, 1.0)

Vector2D v = new Vector2D(-0.0, 1.0); // (-0.0, 1.0)

boolean eq = u.equals(v);

eq will be false because Double.compare considers
0.0 and -0.0 to be unequal

 can you see how to implement equals to allow for equality

of NaN and equality of 0.0 and -0.0?

54

== vs Double.compare
 the real issue here is that floating point arithmetic is

tricky and affects every programming language
 a good starting point for learning more about some of

the issues involved
 http://floating-point-gui.de/

55

http://floating-point-gui.de/�

Observe That...

56

 instead of directly using the fields, we use accessor
methods where possible
 this reduces code duplication, especially if accessing an

field requires a lot of code
 this gives us the possibility to change the representation of

the fields in the future
 as long as we update the accessor methods (but we would have to

do that anyway to preserve the API)
 for example, instead of two attributes x and y, we might want to

use an array or some sort of Collection

 the notes [notes 2.3.1] call this delegating to accessors

Observe That...

57

 instead of directly modifying the attributes, we use
mutator methods where possible
 this reduces code duplication, especially if modifying an

attribute requires a lot of code
 this gives us the possibility to change the representation of

the attributes in the future
 as long as we update the mutator methods (but we would have to

do that anyway to preserve the API)
 for example, instead of two attributes x and y, we might

want to use an array or some sort of Collection

 the notes [notes 2.3.1] call this delegating to mutators

Things to Think About

58

 how do you implement Vector2D using an array to
store the coordinates?

 how do you implement Vector2D using a
Collection to store the coordinates?

 how do you implement VectorND, an N-dimensional
vector?

	Classes (Part 2)
	Goals
	Overriding equals()
	Slide Number 4
	Object.equals()
	PhoneNumber.equals()
	Slide Number 7
	Slide Number 8
	CSE1030 Requirements for equals
	1. An Instance is Equal to Itself
	Slide Number 11
	2. An Instance is Never Equal to null
	Slide Number 13
	3. Instances of the Same Type can be Equal
	Slide Number 15
	Instances with Same State are Equal
	Slide Number 17
	Instances with Same State are Equal
	Slide Number 19
	The equals() Contract
	The equals() contract: Reflexivity
	The equals() contract: Symmetry
	The equals() contract: Transitivity
	The equals() contract: Consistency
	The equals() contract: Non-nullity
	The equals() contract and getClass()
	One more thing regarding equals()
	Mutable Classes
	Mutable Classes
	Reading a Text File into a String
	Reading a Text File into a StringBuilder
	Example Mutable class
	What Can Mathematical Vectors Do?
	Constructors
	Constructors
	Constructors
	Avoiding Code Duplication
	Constructors
	Constructor Chaining
	Accessor Methods
	Accessor Methods
	Mutator Methods
	Mutator Methods
	setX(), setY(), and set()
	Equals
	equals()
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	== vs Double.compare
	== vs Double.compare
	== vs Double.compare
	== vs Double.compare
	== vs Double.compare
	Observe That...
	Observe That...
	Things to Think About

