
Documenting Code

1

Javadoc
 documenting code was not a new idea when Java was

invented
 however, Java was the first major language to embed

documentation in the code and extract the documentation
into readable electronic APIs

 the tool that generates API documents from comments

embedded in the code is called Javadoc

2

Javadoc

3

 Javadoc processes doc comments that immediately
precede a class, attribute, constructor or method
declaration
 doc comments delimited by /** and */
 doc comment written in HTML and made up of two parts

1. a description
 first sentence of description gets copied to the summary section
 only one description block; can use <p> to create separate

paragraphs
2. block tags
 begin with @ (@param, @return, @exception)
 @pre. is non-standard (custom tag used in CSE1030)

Javadoc Guidelines

4

 http://www.oracle.com/technetwork/java/javase/documentation/inde
x-137868.html

 [notes 1.5.1, 1.5.2]

 precede every exported class, interface, constructor,
method, and attribute with a doc comment

 for methods the doc comment should describe the
contract between the method and the client
 preconditions ([notes 1.4], [JBA 2.3.3])
 postconditions ([notes 1.4], [JBA 2.3.3])

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html�
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html�

Javadoc Examples
 short in-class demo here
 see any lab exercise

5

Classes (Part 1)

Implementing non-static features

6

Goals
 implement a small immutable class with non-static

attributes and methods
 recipe for immutability
 this

 toString method
 equals method

7

Value Type Classes

8

 a value type is a class that represents a value
 examples of values: name, date, colour, mathematical

vector
 Java examples: String, Date, Integer

 the objects created from a value type class can be:
 mutable: the state of the object can change
 Date

 immutable: the state of the object is constant once it is
created
 String, Integer (and all of the other primitive wrapper

classes)

Immutable Classes

9

 a class defines an immutable type if an instance of the
class cannot be modified after it is created
 each instance has its own constant state

 more precisely, the externally visible state of each object appears
to be constant

 Java examples: String, Integer (and all of the other
primitive wrapper classes)

 advantages of immutability versus mutability
 easier to design, implement, and use
 can never be put into an inconsistent state after creation

North American Phone Numbers
 North American Numbering Plan is the standard used

in Canada and the USA for telephone numbers
 telephone numbers look like

416-736-2100

10

area
code

exchange
code

station
code

Designing a Simple Immutable Class

11

 PhoneNumber API

PhoneNumber

- areaCode : short
- exchangeCode : short
- stationCode : short

+ PhoneNumber(int, int, int)
+ equals(Object) : boolean
+ getAreaCode() : short
+ getExchangeCode() : short
+ getStationCode() : short
+ toString() : String

none of these
features are static

12

package cse1030;

public class PhoneNumber {

}

Recipe for Immutability
 the recipe for immutability in Java is described by

Joshua Bloch in the book Effective Java*

1. Do not provide any methods that can alter the state
of the object

2. Prevent the class from being extended
3. Make all fields final
4. Make all fields private
5. Prevent clients from obtaining a reference to any

mutable fields

13 *highly recommended reading if you plan on becoming a Java programmer

revisit when we talk
about inheritance

revisit when we talk
about composition

Recipe for Immutability 1

14

1. Do not provide any methods that can alter the state
of the object

 methods that modify state are called mutators
 Java example of a mutator:

import java.util.Calendar;

public class CalendarClient {
 public static void main(String[] args)
 {
 Calendar now = Calendar.getInstance();
 // set hour to 5am
 now.set(Calendar.HOUR_OF_DAY, 5);
 }
}

Recipe for Immutability 2

15

2. Prevent the class from being extended
 one way to do this is to mark the class as final

 a final class cannot be extended using inheritance
 don't confuse final variable and final classes

 the reason for this step will become clear in a couple
of weeks

16

package cse1030;

public final class PhoneNumber {

}

Recipe for Immutability 3

17

3. Make all fields final
 recall that final means that the field can only be

assigned to once
 final fields make your intent clear that the class is

immutable

18

package cse1030;

public final class PhoneNumber {
 final int areaCode;
 final int exchangeCode;
 final int stationCode;

}

Recipe for Immutability 4

19

4. Make all fields private
 this applies to all public classes (including mutable

classes)
 in public classes, strongly prefer private fields
 and avoid using public fields

 private fields support encapsulation
 because they are not part of the API, you can change them (even

remove them) without affecting any clients
 the class controls what happens to private fields
 it can prevent the fields from being modified to an inconsistent state

20

package cse1030;

public final class PhoneNumber {
 private final int areaCode;
 private final int exchangeCode;
 private final int stationCode;

}

Recipe for Immutability 5

21

5. Prevent clients from obtaining a reference to any
mutable fields

 recall that final fields have constant state only if the
type of the attribute is a primitive or is immutable

 if you allow a client to get a reference to a mutable field,
the client can change the state of the field, and hence, the
state of your immutable class

 revisit this point when we talk about composition
 also, none of our fields are reference types so we don't have to

worry about this point

this

22

 every non-static method of a class has an implicit
parameter called this

 recall that a non-static method requires an object to call
the method

 inside getAreaCode, this is a reference to object used to
invoke the method

// client of PhoneNumber

PhoneNumber num = new PhoneNumber(416, 736, 2100);
int areaCode = num.getAreaCode(); // get the
 // area code that
 // belongs to num

getAreaCode

23

 how does the method getAreaCode() get the area
code for the correct instance?
 this is a reference to the calling object

return the area code belonging
to the PhoneNumber object that
was used to invoke the method

 /**
 * Get the area code of this phone number.
 *
 * @return the area code of this phone number
 */
 public int getAreaCode() {
 return this.areaCode;
 }

getExchangeCode and getStationCode

24

 getExchangeCode() and getStationCode() are
very similar

return the exchange code belonging
to the PhoneNumber object that
was used to invoke the method

 /**
 * Get the exchange code of this phone number.
 *
 * @return the exchange code of this phone number
 */
 public int getExchangeCode() {
 return this.exchangeCode;
 }

getExchangeCode and getStationCode

25

 getExchangeCode() and getStationCode() are
very similar

return the station code belonging
to the PhoneNumber object that
was used to invoke the method

 /**
 * Get the station code of this phone number.
 *
 * @return the station code of this phone number
 */
 public int getStationCode() {
 return this.stationCode;
 }

toString()

26

 recall that every class extends java.lang.Object
 Object defines a method toString() that returns a
String representation of the calling object
 we can call toString() with our current PhoneNumber class

 this prints something like
phonenumber.PhoneNumber@19821f

// client of PhoneNumber

PhoneNumber num = new PhoneNumber(416, 736, 2100);
System.out.println(num.toString());

toString()

27

 toString() should return a concise but informative
representation that is easy for a person to read

 it is recommended that all subclasses override this
method
 this means that any non-utility class you write should

redefine the toString() method
 in this case, our new toString() method has the same

declaration as toString() in java.lang.Object

toString()

28

 it is "easy" to override toString() for our class
 /**
 * Returns a string representation of this phone number. The string starts
 * with the area code inside of parenthesis, followed by a space, followed by
 * the exchange code, followed by a hyphen, followed by the station code. The
 * area code and exchange code always have three digits (zero-padded), and the
 * station code always has four digits (zero-padded). For example, the string
 * representation of the phone number 416-736-2100 is:
 *
 * <p>
 * <code>(416) 736-2100</code>
 *
 * @return a string representation of this phone number
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString() {
 return String.format("(%1$03d) %2$03d-%3$04d",
 this.areaCode,
 this.exchangeCode,
 this.stationCode);
 }

Constructors

29

Constructors

30

 constructors are responsible for initializing instances
of a class
 usually, a constructor will set the fields of the object to:
 some reasonable default values, or
 some client specified values,
 or some combination of the two

[notes 2.2.3]

Constructors

31

 a constructor declaration looks a little bit like a
method declaration:
 the name of a constructor is the same as the class name
 a constructor may have an access modifier (but no other

modifiers)

32

 public PhoneNumber() {

 }

 public PhoneNumber(int areaCode,
 int exchangeCode,
 int stationCode) {

 }

the default constructor
(has no parameters)

a constructor with
three parameters

Constructors

33

 every constructor has an implicit this parameter
 the this parameter is a reference to the object that is

currently being constructed

34

 public PhoneNumber() {
 this.areaCode = 800;
 this.exchangeCode = 555;
 this.stationCode = 1111;
 }

 public PhoneNumber(int areaCode,
 int exchangeCode, int stationCode) {
 this.areaCode = areaCode;
 this.exchangeCode = exchangeCode;
 this.stationCode = stationCode;
 }

Bell Canada operator
phone number?

client specified
phone number

Constructors

35

 a constructor will often need to validate its arguments
 because you generally should avoid creating objects with

invalid state

 what are valid area codes, exchange codes, and station
codes?
 we will assume:
 must not be negative
 area code and exchange codes < 1,000
 station code < 10,000

 reality is more complicated...

36

 public PhoneNumber(int areaCode,
 int exchangeCode, int stationCode) {

 if (areaCode < 0 || areaCode > 999) {
 throw new IllegalArgumentException("bad area code");
 }
 if (exchangeCode < 0 || exchangeCode > 999) {
 throw new IllegalArgumentException("bad exchange code");
 }
 if (stationCode < 0 || stationCode > 9999) {
 throw new IllegalArgumentException("bad station code");
 }
 this.areaCode = areaCode;
 this.exchangeCode = exchangeCode;
 this.stationCode = stationCode;
 }

Comment on Immutability
 notice that our constructors make it impossible for a

client to create an invalid phone number
 also recall that our class is immutable
 i.e., the client cannot change a phone number once it is

created
 the above two features guarantee that all
PhoneNumber objects will be valid phone numbers

37

	Documenting Code
	Javadoc
	Javadoc
	Javadoc Guidelines
	Javadoc Examples
	Classes (Part 1)
	Goals
	Value Type Classes
	Immutable Classes
	North American Phone Numbers
	Designing a Simple Immutable Class
	Slide Number 12
	Recipe for Immutability
	Recipe for Immutability 1
	Recipe for Immutability 2
	Slide Number 16
	Recipe for Immutability 3
	Slide Number 18
	Recipe for Immutability 4
	Slide Number 20
	Recipe for Immutability 5
	this
	getAreaCode
	getExchangeCode and getStationCode
	getExchangeCode and getStationCode
	toString()
	toString()
	toString()
	Constructors
	Constructors
	Constructors
	Slide Number 32
	Constructors
	Slide Number 34
	Constructors
	Slide Number 36
	Comment on Immutability

