
Utilities (Part 1)

Implementing static features

1

Goals for Today
 initiate the design of simple class
 learn about class attributes
 public
 static
 final

2

Motivation

3

 the game Yahtzee
 use the link above to see the rules of the game

 why?
 opportunity to solve small computational problems that are

related to much harder problems

http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774

http://en.wikipedia.org/wiki/Yahtzee�
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774�

Yahtzee Roll Categories

4

 if I gave you a List<Die> containing 5 dice can you
write a Java program that determines if the roll
belongs to a particular category?
 http://www.eecs.yorku.ca/course_archive/2012-13/W/1030/Z/labs/01/doc/

Category Description Example

Three of a kind at least three dice having the same value 6-2-3-2-2

Four of a kind at least four dice having the same value 5-5-5-1-5

Full house three-of-a-kind and a pair 2-3-3-2-3

Small straight at least four sequential dice 3-1-3-4-2

Large straight five sequential dice 5-1-3-4-2

Yahtzee all five dice having the same value 4-4-4-4-4

http://www.eecs.yorku.ca/course_archive/2012-13/W/1030/Z/labs/01/doc/�

Yahtzee Roll Categories

5

 there are several different approaches that you can use

to determine if a roll belongs to a particular category
 try to find a few different approaches for each category

 however, starting by sorting the list of dice simplifies

the problem

Sorting a List

6

 you can sort a List<Die> by using the sort method
in the utility class java.util.Collections

// dice is a List<Die> reference
Collections.sort(dice);

Why Does Sorting Help?
 sorting reduces the number of cases that you have to

check; consider the category three-of-a-kind
 after sorting the dice you only have to check if one of three

cases are true

7

X X X

X X X

X X X

case 1

case 2

case 3
don't care
about the

values of the
blank dice

Three-of-a-kind?

// dice is a List<Die> reference

Collections.sort(dice);

boolean isThreeOfAKind =

 dice.get(0).getValue() == dice.get(2).getValue() ||

 dice.get(1).getValue() == dice.get(3).getValue() ||

 dice.get(2).getValue() == dice.get(4).getValue();

8

Sorting in General

9

 sorting seems useful
 what other examples can you think of?

 how would you implement Collections.sort?

 in-class sorting contest here

Sorting Strategies Tried by Students

10

Bad Ways to Sort

11

 bogosort is a very slow algorithm for sorting a list

 bozosort is another very slow algorithm

while the list is not sorted {
 randomly shuffle the elements in the list
}

while the list is not sorted {
 pick two elements at random and swap them
}

Review: Java Class

12

 a class is a model of a thing or concept

 in Java, a class is the blueprint for creating objects
 fields (or attributes)

 the structure of an object; its components and the information
(data) contained by the object

 methods
 the behaviour of an object; what an object can do

Designing a Class

13

 to decide what fields and methods a class must
provide, you need to understand the problem you are
trying to solve
 the fields and methods you provide (the abstraction you

provide) depends entirely on the requirements of the
problem

Person

appearance
voice

…

draw()
talk()

…

Person

age
photograph

…

compatibleWith(Person)
contact ()

…

video game person dating service person

class name

fields

methods

A Class for Yahtzee

14

 design a class to encapsulate features of Yahtzee
 what fields are needed?
 number of dice

 note: the number of dice never changes; it is genuinely a constant
value for the game called Yahtzee

 attributes that are constant have all uppercase names

Yahtzee

+ NUMBER_OF_DICE: int

field type

Version 1

15

public class Yahtzee {

 public static final int NUMBER_OF_DICE = 5;

}

Fields

16

 a field is a member that holds data
 a constant field is usually declared by specifying

1. modifiers
1. access modifier public
2. static modifier static
3. final modifier final

2. type int

3. name NUMBER_OF_DICE

4. value 5

public static final int NUMBER_OF_DICE = 5;

Fields

17

 field names must be unique in a class
 the scope of a field is the entire class
 [JBA] and [notes] use the term "field" only for public

fields

public Fields

18

 a public field is visible to all clients

public class NothingToHide {
 public int x; // always positive
}

// client of NothingToHide
NothingToHide h = new NothingToHide();
h.x = 100;

public Fields

19

 public fields break encapsulation
 a NothingToHide object has no control over the value o f x

 a client can put a NothingToHide object into an invalid
state because the client has direct access to a public field

public class NothingToHide {
 public int x; // always positive
}

// client of NothingToHide
NothingToHide h = new NothingToHide();
h.x = 100;
h.x = -5; // not positive

public Fields

20

 a public field makes a class brittle in the face of
change

 public fields are hard to change
 they are part of the class API
 changing access or type will break exisiting client code

public class NothingToHide {
 private int x; // always positive
}

// existing client of NothingToHide
NothingToHide h = new NothingToHide();
h.x = 100; // no longer compiles

public Fields

21

 avoid public fields in production code
 except when you want to expose constant value types

static Fields

22

 a field that is static is a per-class member
 only one copy of the field, and the field is associated with

the class
 every object created from a class declaring a static field shares the

same copy of the field
 textbook uses the term static variable
 also commonly called class variable

static Fields

23

Yahtzee y = new Yahtzee();

Yahtzee z = new Yahtzee();

64 client invocation

y

see [JBA 4.3.3] for another example

500 Yahtzee class

NUMBER_OF_DICE 5

1000 Yahtzee object

???

1100 Yahtzee object

???

z
1000

1100

belongs to class

no copy of
NUMBER_OF_DICE

static Field Client Access

24

 a client should access a public static field
without using an object
 use the class name followed by a period followed by the

attribute name

// client of Yahtzee
List<Die> dice = new List<Die>();
for(int i = 0; i < Yahtzee.NUMBER_OF_DICE; i++) {
 dice.add(new Die(6));
}

static Attribute Client Access

25

 it is legal, but considered bad form, to access a public
static attribute using an object
// client of Yahtzee; avoid doing this
Yahtzee y = new Yahtzee();
List<Die> dice = new List<Die>();
for(int i = 0; i < y.NUMBER_OF_DICE; i++) {
 dice.add(new Die(6));
}

final Fields

26

 an field that is final can only be assigned to once
 public static final attributes are typically assigned

when they are declared

public static final int NUMBER_OF_DICE = 5;

 public static final attributes are intended to be

constant values that are a meaningful part of the
abstraction provided by the class

final Fields of Primitive Types

27

 final fields of primitive types are constant
 public class AlsoNothingToHide {
 public static final int X = 100;
}

// client of AlsoNothingToHide
AlsoNothingToHide.X = 88; // will not compile;
 // attribute is final and
 // previously assigned

final Fields of Immutable Types

28

 final fields of immutable types are constant

 also, String is immutable
 it has no methods to change its contents

public class StillNothingToHide {
 public static final String X = "peek-a-boo";
}

// client of StillNothingToHide
StillNothingToHide.X = "i-see-you";
 // will not compile;
 // field is final and
 // previously assigned

final Fields of Mutable Types

29

 final fields of mutable types are not logically
constant; their state can be changed

public class ReallyNothingToHide {
 public static final Fraction HALF =
 new Fraction(1, 2);
}

// client of ReallyNothingToHide
Fraction third = new Fraction(1, 3);
ReallyNothingToHide.HALF = third; // will not compile;
 // HALF is final and
 // already assigned

ReallyNothingToHide.HALF.setDenominator(3); // works!!

final Fields of Mutable Types

30

ReallyNothingToHide class

final HALF 192 700

:

700 Fraction obj

:

not final! numerator 1

not final! denominator 2

ReallyNothingToHide.HALF.setDenominator(3);

3

final Fields of Mutable Types

31

 final fields of mutable types are not logically
constant; their state can be changed

public class LastNothingToHide {
 public static final ArrayList<Integer> X =
 new ArrayList<Integer>();
}

// client of LastNothingToHide
ArrayList<Integer> y = new ArrayList<Integer>();
LastNothingToHide.X = y; // will not compile;
 // attribute is final and
 // previously assigned

LastNothingToHide.X.add(10000);
 // works!

final Attributes

32

 avoid using mutable types as public constants
 they are not logically constant

Puzzle

33

 what does the following program print?

public class What
{
 public static void main(String[] args)
 {
 final long
 MICROS_PER_DAY = 24 * 60 * 60 * 1000 * 1000;
 final long
 MILLIS_PER_DAY = 24 * 60 * 60 * 1000;
 System.out.println(MICROS_PER_DAY / MILLIS_PER_DAY);
 }
}

	Utilities (Part 1)
	Goals for Today
	Motivation
	Yahtzee Roll Categories
	Yahtzee Roll Categories
	Sorting a List
	Why Does Sorting Help?
	Three-of-a-kind?
	Sorting in General
	Sorting Strategies Tried by Students
	Bad Ways to Sort
	Review: Java Class
	Designing a Class
	�A Class for Yahtzee
	Version 1
	Fields
	Fields
	public Fields
	public Fields
	public Fields
	public Fields
	static Fields
	static Fields
	static Field Client Access
	static Attribute Client Access
	final Fields
	final Fields of Primitive Types
	final Fields of Immutable Types
	final Fields of Mutable Types
	final Fields of Mutable Types
	final Fields of Mutable Types
	final Attributes
	Puzzle

