
Utilities (Part 1) 

Implementing static features 
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Goals for Today 
 initiate the design of simple class 
 learn about class attributes 
 public 
 static 
 final 
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Motivation 
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 the game Yahtzee 
 use the link above to see the rules of the game 

 
 
 
 
 
 

 why? 
 opportunity to solve small computational problems that are 

related to much harder problems 

http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774  
 

http://en.wikipedia.org/wiki/Yahtzee�
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774�


Yahtzee Roll Categories 
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 if I gave you a List<Die> containing 5 dice can you 
write a Java program that determines if the roll 
belongs to a particular category? 
 http://www.eecs.yorku.ca/course_archive/2012-13/W/1030/Z/labs/01/doc/ 

 

Category Description Example 

Three of a kind at least three dice having the same value 6-2-3-2-2 

Four of a kind at least four dice having the same value 5-5-5-1-5 

Full house three-of-a-kind and a pair 2-3-3-2-3 

Small straight at least four sequential dice 3-1-3-4-2 

Large straight five sequential dice 5-1-3-4-2 

Yahtzee all five dice having the same value 4-4-4-4-4 

http://www.eecs.yorku.ca/course_archive/2012-13/W/1030/Z/labs/01/doc/�


Yahtzee Roll Categories 
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 there are several different approaches that you can use 

to determine if a roll belongs to a particular category 
 try to find a few different approaches for each category 

 
 however, starting by sorting the list of dice simplifies 

the problem 



Sorting a List  
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 you can sort a List<Die> by using the sort method 
in the utility class java.util.Collections  
 
// dice is a List<Die> reference 
Collections.sort(dice); 

 
 



Why Does Sorting Help? 
 sorting reduces the number of cases that you have to 

check; consider the category three-of-a-kind 
 after sorting the dice you only have to check if one of three 

cases are true 
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X X X 
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X X X 

case 1 

case 2 

case 3 
don't care 
about the 

values of the 
blank dice 



Three-of-a-kind? 
 

 

// dice is a List<Die> reference 

Collections.sort(dice); 

boolean isThreeOfAKind = 

 dice.get(0).getValue() == dice.get(2).getValue() || 

 dice.get(1).getValue() == dice.get(3).getValue() || 

 dice.get(2).getValue() == dice.get(4).getValue(); 
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Sorting in General 
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 sorting seems useful 
 what other examples can you think of? 

 
 how would you implement Collections.sort? 

 
 

 in-class sorting contest here 



Sorting Strategies Tried by Students 
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Bad Ways to Sort 

11 

 bogosort is a very slow algorithm for sorting a list 
 
 
 
 

 bozosort is another very slow algorithm 

while the list is not sorted { 
  randomly shuffle the elements in the list 
} 

while the list is not sorted { 
  pick two elements at random and swap them 
} 



Review: Java Class 
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 a class is a model of a thing or concept 
 

 in Java, a class is the blueprint for creating objects 
 fields (or attributes) 

 the structure of an object; its components and the information 
(data) contained by the object 

 methods 
 the behaviour of an object; what an object can do 



Designing a Class 
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 to decide what fields and methods a class must 
provide, you need to understand the problem you are 
trying to solve 
 the fields and methods you provide (the abstraction you 

provide) depends entirely on the requirements of the 
problem 

Person 

appearance 
voice 

… 

draw() 
talk() 

… 

Person 

age 
photograph 

… 

compatibleWith(Person) 
contact () 

… 

video game person dating service person 

class name 

 
fields 

 
 

methods 
 
 



 
A Class for Yahtzee 
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 design a class to encapsulate features of Yahtzee 
 what fields are needed? 
 number of dice 

 note: the number of dice never changes; it is genuinely a constant 
value for the game called Yahtzee 

 attributes that are constant have all uppercase names 

Yahtzee 

+ NUMBER_OF_DICE: int 

 
 

field type 



Version 1 
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public class Yahtzee { 

 

 public static final int NUMBER_OF_DICE = 5; 

} 

 

 



Fields  

16 

 
 

 a field is a member that holds data 
 a constant field is usually declared by specifying 

1. modifiers 
1. access modifier  public 
2. static modifier  static 
3. final modifier   final 

2. type   int 

3. name   NUMBER_OF_DICE 

4. value   5 

public static final int NUMBER_OF_DICE = 5; 



Fields 
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 field names must be unique in a class 
 the scope of a field is the entire class 
 [JBA] and [notes] use the term "field" only for public 

fields 
 
 



public Fields 
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 a public field is visible to all clients 
 
 
 
 
 

public class NothingToHide { 
  public int x;  // always positive 
} 

// client of NothingToHide 
NothingToHide h = new NothingToHide(); 
h.x = 100; 



public Fields 
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 public  fields break encapsulation 
 a NothingToHide object has no control over the value o f x 

 a client can put a NothingToHide object into an invalid 
state because the client has direct access to a public field 

public class NothingToHide { 
  public int x;  // always positive 
} 

// client of NothingToHide 
NothingToHide h = new NothingToHide(); 
h.x = 100; 
h.x = -5;        // not positive 



public Fields 
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 a public field makes a class brittle in the face of 
change 
 
 
 
 
 

 public fields are hard to change 
 they are part of the class API 
 changing access or type will break exisiting client code 

public class NothingToHide { 
  private int x;  // always positive 
} 

// existing client of NothingToHide 
NothingToHide h = new NothingToHide(); 
h.x = 100;  // no longer compiles 



public Fields 
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 avoid public fields in production code 
 except when you want to expose constant value types 



static Fields 
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 a field that is static is a per-class member 
 only one copy of the field, and the field is associated with 

the class 
 every object created from a class declaring a static field shares the 

same copy of the field 
 textbook uses the term static variable 
 also commonly called class variable 
 



static Fields 
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Yahtzee y = new Yahtzee(); 

Yahtzee z = new Yahtzee(); 

64 client invocation 

y 

see [JBA 4.3.3] for another example 

500 Yahtzee class 

NUMBER_OF_DICE 5 

1000 Yahtzee object 

??? 

1100 Yahtzee object 

??? 

z 
1000 

1100 

belongs to class 

no copy of 
NUMBER_OF_DICE 



static Field Client Access  
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 a client should access a public static field 
without using an object 
 use the class name followed by a period followed by the 

attribute name 
 
 
// client of Yahtzee 
List<Die> dice = new List<Die>(); 
for(int i = 0; i < Yahtzee.NUMBER_OF_DICE; i++) { 
  dice.add(new Die(6)); 
} 



static Attribute Client Access  
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 it is legal, but considered bad form, to access a public 
static attribute using an object 
// client of Yahtzee; avoid doing this 
Yahtzee y = new Yahtzee(); 
List<Die> dice = new List<Die>(); 
for(int i = 0; i < y.NUMBER_OF_DICE; i++) { 
  dice.add(new Die(6)); 
} 



final Fields 
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 an field that is final can only be assigned to once 
 public static final attributes are typically assigned 

when they are declared  
 
public static final int NUMBER_OF_DICE = 5; 

 
 public static final attributes are intended to be 

constant values that are a meaningful part of the 
abstraction provided by the class 



final Fields of Primitive Types 
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 final fields of primitive types are constant 
 public class AlsoNothingToHide { 
  public static final int X = 100; 
} 

// client of AlsoNothingToHide 
AlsoNothingToHide.X = 88;  // will not compile; 
    // attribute is final and 
    // previously assigned 



final Fields of Immutable Types 
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 final fields of immutable types are constant 
 
 
 
 
 
 
 

 also, String is immutable 
 it has no methods to change its contents 

public class StillNothingToHide { 
  public static final String X = "peek-a-boo"; 
} 

// client of StillNothingToHide 
StillNothingToHide.X = "i-see-you";  
                           // will not compile; 
    // field is final and 
    // previously assigned 



final Fields of Mutable Types 
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 final fields of mutable types are not logically 
constant; their state can be changed 
 
 
 
 
 
 
 
 

public class ReallyNothingToHide { 
  public static final Fraction HALF =  
     new Fraction(1, 2); 
} 

// client of ReallyNothingToHide 
Fraction third = new Fraction(1, 3); 
ReallyNothingToHide.HALF = third; // will not compile; 
     // HALF is final and 
     // already assigned 
 
ReallyNothingToHide.HALF.setDenominator(3);  // works!! 



final Fields of Mutable Types 
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ReallyNothingToHide class 

final HALF 192 700 

: 

700 Fraction obj 

: 

not final! numerator 1 

not final! denominator 2 

ReallyNothingToHide.HALF.setDenominator(3); 

3 



final Fields of Mutable Types 
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 final fields of mutable types are not logically 
constant; their state can be changed 
 
 
 
 
 
 
 
 

public class LastNothingToHide { 
  public static final ArrayList<Integer> X = 
      new ArrayList<Integer>(); 
} 

// client of LastNothingToHide 
ArrayList<Integer> y = new ArrayList<Integer>(); 
LastNothingToHide.X = y; // will not compile; 
    // attribute is final and 
    // previously assigned 
 
LastNothingToHide.X.add( 10000 ); 
    // works! 



final Attributes 
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 avoid using mutable types as public constants 
 they are not logically constant 
 



Puzzle 
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 what does the following program print? 
 
public class What  
{ 
  public static void main(String[] args)  
 { 
    final long 
           MICROS_PER_DAY = 24 * 60 * 60 * 1000 * 1000; 
    final long 
           MILLIS_PER_DAY = 24 * 60 * 60 * 1000; 
    System.out.println(MICROS_PER_DAY / MILLIS_PER_DAY); 
 } 
} 
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