
1 (8 marks)

(a) A static method is invoked on a(n)

Answer: class, or class name

Marking scheme: 4 marks for a correct answer, 0 marks otherwise.

(b) A non-static method is invoked on a(n)

Answer: object, or instance, or reference

Marking scheme: 4 marks for a correct answer, 0 marks otherwise.

2 (20 marks)

(a) What is the state of an object?

Answer: The values of all of its attributes.

Marking scheme: 4 marks for a correct answer, 0 marks otherwise.

(b) What is the identity of an object?

Answer: Its address, or some other unique indentifier.

Marking scheme: 4 marks for a correct answer, 0 marks otherwise.

(c) What does the binary operator == check?

Answer: Equality of identity, or equality of value.

Marking scheme: 4 marks for a correct answer, 0 marks otherwise.

(d) What does the method equals check?

Answer: Equality of state.

Marking scheme: 4 marks for a correct answer, 0 marks otherwise.

(e) Consider the following fragment of Java code:

1 Fraction f1 = new Fraction(1, 2);

2 Fraction f2 = new Fraction(3, 4);

3 Fraction f3 = f1;

Circle the expressions below that evaluate to true:

f1 == f1 f1 == f2 f2 == f3 f1 == f3

f1.equals(f1) f1.equals(f2) f2.equals(f3) f1.equals(f3)

Answers: Underlined above.

Marking scheme: 1 mark for each correct answer, −1 for each incorrect
answer. Lowest possible total mark is 0.

1

3 (8 marks)

What are the two differences between a Set and a List?

Answer: No duplicate elements allowed (Set) versus duplicate elements allowed
(List). Unordered (Set) versus sequential order (List); or only iterator-based
access (Set) versus indexed-based access (List).

Marking scheme: 4 marks for each of the two differences.

4 (28 marks)

Consider the following fragment of (legal) Java code:

1 Number num = new BigInteger("123456789123456789");

2 double val = num.doubleValue();

3 num = ((BigInteger) num).subtract(new BigInteger("1"));

BigInteger extends Number.
The method doubleValue() is polymorphic.
The cast on line 3 is necessary for the code to compile.

(a) What class or classes are searched during early binding for the method
doubleValue()? Justify your answer.

Answer: The declared type of num is Number; thus, early binding searches
Number.

Marking scheme:

– 2 marks for mentioning the declared type

– 2 marks for the correct class (Number).

(b) What class or classes are searched during early binding for the method
subtract(BigInteger)? Justify your answer.

Answer: The declared type of num is Number, which is cast to BigInteger

for the invocation; thus, early binding searches BigInteger.

Marking scheme:

– 2 marks for mentioning the declared type

– 4 marks for mentioning the cast

– 2 marks for the correct class (BigInteger).

(c) What class or classes are searched during late binding for the method
doubleValue()? Justify your answer.

Answer: The actual (or runtime) type of num is BigInteger; thus, late
binding searches BigInteger.

Marking scheme:

2

– 6 marks for mentioning “actual type”

– 6 marks for identifying the actual type as BigInteger

– 4 marks for the correct class (BigInteger).

5 (4 marks)

Explain how composition differs from aggregation.

Answer: Composition is a stronger form of aggregation where the lifetime of
the object and its aggregated objects are the same.

Alternative answer: In a composition, the whole cannot exist without its parts.
In an aggregation, the whole and the parts can exist without each other.

Marking scheme: 4 marks for a correct answer.

6 (28 marks)

Consider the following UML diagram.

Exception

RuntimeException

IndexOutOfBoundsException

ArrayIndexOutOfBoundsException

(a) Consider the following main method.

1 public static void main(String[] args)

2 {

3 PrintStream output = System.out;

4

5 try

6 {

7 output.println(args[-1]);

3

8 ...

9 }

10 catch (ArrayIndexOutOfBoundsException e)

11 {

12 output.println("Invalid array index is used");

13 }

14 catch (Exception e)

15 {

16 output.println("Something went wrong!");

17 }

18 }

The above main method produces the following output.

Invalid array index is used

Explain what happens when the code is run. In your explanation, use the
following phrases if they are relevant (not all may be relevant):

– throw(s) an exception

– terminate(s) immediately

– determine(s) the appropriate

– substitutable/substitutability

Answer: On line 7, args[-1] throws an exception of type ArrayIndexOutOfBoundsException.
Execution of the try block terminates immediately. The virtual machine
determines that the appropriate exception handler is catch (ArrayIndexOutOfBoundsException

e) on line 10. Program flow goes to the handler which produces the given
output.

Marking scheme:

– 4 marks for correctly using “throws an exception” (or its equivalent)

– 4 marks for correctly using “terminates immediately” (or its equiva-
lent)

– 4 marks for correctly using “determines the appropriate” (or its
equivalent)

(b) Consider the following main method.

1 public static void main(String[] args)

2 {

3 PrintStream output = System.out;

4

5 try

6 {

7 output.println(args[-1]);

4

8 ...

9 }

10 catch (IndexOutOfBoundsException e)

11 {

12 output.println("Invalid index is used");

13 }

14 catch (Exception e)

15 {

16 output.println("Something went wrong!");

17 }

18 }

The above main method produces the following output.

Invalid index is used

Explain what happens when the code is run. In your explanation, use the
following phrases if they are relevant (not all may be relevant):

– throw(s) an exception

– terminate(s) immediately

– determine(s) the appropriate

– substitutable/substitutability

Answer: On line 7, args[-1] throws an exception of type ArrayIndexOutOfBoundsException.
Execution of the try block terminates immediately. The virtual machine
determines that the appropriate exception handler is catch (IndexOutOfBoundsException

e) on line 10 because ArrayIndexOutOfBoundsException is substitutable
for IndexOutOfBoundsException. Program flow goes to the handler which
produces the given output.

Marking scheme:

– 4 marks for correctly using “throws an exception” (or its equivalent)

– 4 marks for correctly using “terminates immediately” (or its equiva-
lent)

– 4 marks for correctly using “determines the appropriate” (or its
equivalent)

– 4 marks for correctly using “substitutable” (or its equivalent)

7 (14 marks)

Consider the following UML diagram.

String Pen Ink Color

5

Consider the following code snippet (which appears in the body of a main
method).

1 Pen pen = new Pen("Papermate", new Ink(Color.BLUE));

2 Pen alias = ...;

3 Pen shallow = ...;

4 Pen deep = ...;

Assume that memory can be depicted by the diagram below when the execution
reaches the end of line 1. Recall that the String class is immutable.

...
100 main invocation
pen 600

alias

shallow

deep

200 Pen class

300 Ink class

400 Color class

500 String class

600 Pen object
name 700
ink 800

700 String object
"Papermate"

800 Ink object
color 900

900 Color object
...

(a) Consider that an alias of pen is assigned to alias in line 2. Draw the
diagram depicting memory when the execution reaches the end of line 2.
Draw only those blocks which have changed or are new.

Answer:

6

...
100 main invocation
pen 600

alias 600
shallow

deep
...

Marking scheme: 2 marks if alias has the address 600 as its value, 0
marks otherwise.

(b) Consider that a shallow copy of pen is assigned to shallow in line 3.
Draw the diagram depicting memory when the execution reaches the end
of line 3. Draw only those blocks which have changed or are new.

Answer:

...
100 main invocation
pen 600

alias 600
shallow 1000

deep

1000 Pen object
name 700
ink 800

...

Marking scheme:

– 2 marks if shallow has a new (one that was not used before) address
as its value, 0 marks otherwise.

– 2 marks if there a new Pen object at that new address, 0 marks
otherwise.

– 1 mark if the value of name of the new Pen object is 700, 0 marks
otherwise.

– 1 mark if the value of ink of the new Pen object is 800, 0 marks
otherwise.

(c) Consider that a deep copy of pen is assigned to deep in line 4. Draw the
diagram depicting memory when the execution reaches the end of line 4.
Draw only those blocks which have changed or are new.

Answer:

7

...
100 main invocation
pen 600

alias 600
shallow 1000

deep 1100

1100 Pen object
name 700
ink 1200

1200 Ink object
color 1300

1300 Color object
...

Marking scheme:

– 2 marks if deep has a new (one that was not used before) address as
its value, 0 marks otherwise.

– 2 marks if there a new Pen object at that new address, 0 marks
otherwise.

– 1 mark if the value of name of the new Pen object is 700, 0 marks
otherwise. (Here you use the fact that the class String is immutable
and, hence, there is no point to make a copy.)

– 1 mark if the value of ink of the new Pen object is the address of a
new Ink object, 0 marks otherwise.

8 (10 marks)

(a) What is a loop invariant?

Answer: something that holds at the end of every iteration (page 193 of
the textbook).

Marking scheme:

– Something like “a boolean expression (or something) that holds at
the beginning (or end) of every iteration” deserves 2 marks.

– An answer that contains “boolean expression” but does that mention
“every iteration” deserves 1 mark.

8

(b) Searching a collection for a particular element is performed using a loop.
Suppose that we want to know whether or not a list contains at least one
string that starts with z. Consider the following attempt:

1 // t is a List<String>

2 boolean found = false;

3 for (int i = 0; i < t.size(); i++)

4 {

5 found = t.get(i).startsWith("z");

6 }

What is a useful loop invariant in the code fragment shown above?

Answer: found == (i == 0) ∨ t.get(i - 1).startsWith("z")

Alternative answer: the value of found matches the value of “the last
element visited thus far starts with a z.”

Marking scheme:

– A correct and useful loop invariant deserves 2 marks.

– If the loop invariant is incorrect but mentions the last element, then
1 mark.

(c) The loop invariant in Part (b) does not correctly solve the search problem.
What is a useful loop invariant that correctly solves the search problem?

Answer: found == ∃0 ≤ j < i : t.get(j).startsWith("z")

Alternative answer: the value of found matches the value of “one of the
elements visited thus far starts with a z.”

Marking scheme:

– A correct and useful loop invariant deserves 2 marks.

– If the loop invariant is incorrect but mentions that some element
starts with z, then 1 mark.

(d) Using big-O notation, state the complexity of the loop shown in Part (b)
where N is the number of elements in the list.

Answer: O(N).

Marking scheme: 2 marks if O(N), 0 marks otherwise.

(e) Suppose we want to solve a different search problem: Does a set contain
all of the elements of another set? Consider the following attempt:

9

1 // set1 is a Set<String>

2 // set2 is a Set<String>

3 boolean containsAll = true;

4 for (String s1 : set1)

5 {

6 boolean found = false;

7 for (String s2 : set2)

8 {

9 found = found || s1.equals(s2);

10 }

11 containsAll = containsAll && found;

12 }

Using big-O notation, state the complexity of the code fragment shown
above. Explain your answer (but do not formally prove your answer). You
can assume that both sets always have N elements.

Answer: O(N2).

Marking scheme: 2 marks if O(N2), 0 marks otherwise.

10

